Skip to main content

Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef

Abstract

Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Article  Google Scholar 

  2. Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res 48:2185–2194

    Article  Google Scholar 

  3. Aronson RB, Precht WF (2000) Herbivory and algal dynamics on the coral reef at Discovery Bay, Jamaica. Limnol Oceanogr 45:251–255

    Article  Google Scholar 

  4. Bellwood DR, Hughes TP, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439

    PubMed  Article  CAS  Google Scholar 

  5. Bongaerts P, Ridgway T, Sampayo EM et al (2010) Assessing the “deep reef refugia” hypothesis: focus on Caribbean reefs. Coral Reefs 2:309–327

    Article  Google Scholar 

  6. Brokovich E, Einbinder S, Shashar N et al (2008) Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar Ecol Prog Ser 371:253–262

    Article  Google Scholar 

  7. Brokovich E, Ayalon I, Einbinder S et al (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Article  Google Scholar 

  8. Bruno JF, Sweatman H, Precht WF et al (2009) Assesing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90:1478–1484

    PubMed  Article  Google Scholar 

  9. Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complimentary affect community structure and function on a coral reef. Proc Natl Acad Sci 105:16201–16206

    PubMed  Article  CAS  Google Scholar 

  10. Burkepile DE, Hay ME (2009) Nutrient versus herbivore control of macroalgal community development and coral growth on a Caribbean coral reef. Mar Ecol Prog Ser 389:71–84

    Article  Google Scholar 

  11. Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE 5:e8963

    PubMed  Article  Google Scholar 

  12. Calderon EN, Zilberberg C, de Paiva PC (2007) The possible role of Ecinometra lacunteri (Echinodermata: Echinoidea) in the local distribution of Darwinnela sp. (Porifera: Dendroceratida) in Arraial do Cabo, Rio de Janeiro State, Brazil. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, pp 211–217

    Google Scholar 

  13. Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363

    Article  Google Scholar 

  14. Côté IM, Maljkovíc A (2010) Predation rates of Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 404:219–225

    Article  Google Scholar 

  15. de Ruyter van Steveninck ED, Breeman AM (1987) Deep water vegetations of Lobophora variegata (Phaeophyceae) in the coral reef of Curacao: population dynamics in relation to mass mortality of the sea urchin Diadema antillarum. Mar Ecol Prog Ser 36:81–90

    Article  Google Scholar 

  16. Diamond JM (1986) Overview: laboratory experiments, field experiments, and natural experiments. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 3–22

    Google Scholar 

  17. Diaz-Pulido G, McCook LJ (2003) Relative roles of herbivory and nutrients in the recruitment of coral-reef seaweeds. Ecology 84:2026–2033

    Article  Google Scholar 

  18. Diaz-Pulido G, McCook LJ, Dove S et al (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4:e5239

    PubMed  Article  Google Scholar 

  19. Donner SD, Skirving WJ, Little CM et al (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Change Biol 11:2251–2265

    Article  Google Scholar 

  20. Dudgeon SR, Aronson RB, Bruno JF, Precht WF (2010) Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser 413:201–216

    Article  Google Scholar 

  21. Edmunds PJ, Carpenter RC (2001) Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci 98:5067–5071

    PubMed  Article  CAS  Google Scholar 

  22. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    PubMed  Article  CAS  Google Scholar 

  23. Gardner TA, Cote IM, Gill JA et al (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    PubMed  Article  CAS  Google Scholar 

  24. Gochfeld DJ, Olson JB, Slattery M (2006) Colony versus population variation in susceptibility and resistance to Dark Spot Syndrome in the Caribbean coral Siderastrea siderea. Dis Aquat Org 69:53–65

    PubMed  Article  Google Scholar 

  25. Hare JA, Whitfield PE (2003) An integrated assessment of the introduction of lionfish (Pterois volitans/miles complex) to the western Atlantic Ocean. NOAA Technical Memorandum NOS NCCOS 2, 21 pp

  26. Hargrove WH, Pickering J (1992) Pseudoreplication: a sina qua non for regional ecology. Landsc Ecol 6:251–258

    Article  Google Scholar 

  27. Hendler G, Miller JE, Pawson DL et al. (1995) Echinoderms of Florida and the Caribbean Sea Stars, Sea Urchins, and Allies. Smithsonian Institute, 390 pp

  28. Hoegh-Guldberg H, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    PubMed  Article  CAS  Google Scholar 

  29. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    PubMed  Article  CAS  Google Scholar 

  30. Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    PubMed  Article  CAS  Google Scholar 

  31. Hughes TP, Graham NAJ, Jackson JBC et al (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    PubMed  Article  Google Scholar 

  32. LaPointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and Southeast Florida. Limnol Oceanogr 42:1119–1131

    Article  CAS  Google Scholar 

  33. Legendre P, De Cáceres M, Borcard D (2010) Community surveys through space and time: testing the space-time interact ion in the absence of replication. Ecology 91:262–272

    PubMed  Article  Google Scholar 

  34. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  35. Lesser MP, Slattery M, Stat M et al (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    PubMed  Article  Google Scholar 

  36. Lewis SM (1985) Herbivory on coral reefs: algal susceptibility to herbivorous fish. Oecologia 65:370–375

    Article  Google Scholar 

  37. Lewis SM (1986) The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol Monogr 56:183–200

    Article  Google Scholar 

  38. Liddell WD, Avery WE, Ohlhorst SL (1997) Patterns of benthic community structure, 10–250 m, the Bahamas. Proc 8th Int Coral Reef Symp 1: 437–442

  39. Littler MM, Littler DS, Brooks BL (2006) Harmful algae on tropical coral reefs: bottom-up eutrophication and top-down herbivory. Harmful Algae 5:565–585

    Article  Google Scholar 

  40. McClanahan TR, Sala E, Stickels PA et al (2003) Interaction between nutrients and herbivory in controlling alga communities and coral condition on Glover’s Reef, Belize. Mar Ecol Prog Ser 261:135–147

    Article  Google Scholar 

  41. Morris JA, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fishes 86:389–398

    Article  Google Scholar 

  42. Morrison D (1988) Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecol 69:1367–1382

    Article  Google Scholar 

  43. Mumby PJ (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–769

    PubMed  Article  Google Scholar 

  44. Mumby PJ (2009) Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28:761–773

    Article  Google Scholar 

  45. Mumby PJ, Dahlgren CP, Harborne AR et al (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101

    PubMed  Article  CAS  Google Scholar 

  46. Nemeth RS (2009) Dynamics of reef fish and decapod crustacean spawning aggregations: underlying mechanisms, habitat linkages and trophic interactions. In: Nagelkerken I (ed) Ecological interactions among tropical coastal ecosystems. Springer, New York, pp 73–134

    Chapter  Google Scholar 

  47. Norström AV, Nyström M, Lokrantz J et al (2009) Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser 376:295–306

    Article  Google Scholar 

  48. Nugues MM, Bak RPM (2006) Differential competitive abilities between Caribbean coral species and a brown alga: a year of experiments and a long-term perspective. Mar Ecol Prog Ser 315:75–86

    Article  Google Scholar 

  49. Nugues MM, Bak RPM (2008) Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curacao. Coral Reefs 27:389–393

    Article  Google Scholar 

  50. Ostrander GK, Armstrong KM, Knobbe ET et al (2000) Rapid transition in the structure of a coral reef community: the effects of coral bleaching and physical disturbance. Proc Natl Acad Sci 97:5297–5302

    PubMed  Article  CAS  Google Scholar 

  51. Oxenford HA, Fanning P, Cowen RK (2008) Spatial distribution of surgeonfish (Acanthuridae) pelagic larvae in the Eastern Caribbean. In: Grober-Dunsmore R, Keller BD (eds) Caribbean connectivity: implications for marine protected area management. NOAA Marine Sanctuaries Conservation Series ONMS-08-07. pp 42–51

  52. Paddack MJ, Reynolds JD, Aguilar C et al (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 1:590–595

    Article  Google Scholar 

  53. Precht WF, Aronson RB (2006) Death and resurrection of Caribbean reefs: a palaeoecological perspective. In: Côté I, Reynolds J (eds) Coral reef conservation. Cambridge University Press, Cambridge, pp 40–77

    Chapter  Google Scholar 

  54. Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  55. Runcie JW, Gurgel CFD, Mcdermid KJ (2008) In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol 43:377–388

    Article  CAS  Google Scholar 

  56. Sandin SA, Smith JE, DeMartini EE et al (2008) Baselines and degradation of coral reefs in the Northern Line islands. PLoS ONE 3:e1548

    PubMed  Article  Google Scholar 

  57. Sotka EE, Hay ME (2009) Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth. Coral Reefs 28:555–568

    Article  Google Scholar 

  58. Starr RM, Sala E, Ballesteros E, Zabala M (2007) Spatial dynamics of the Nassau grouper Epinephelus striatus in a Caribbean atoll. Mar Ecol Prog Ser 343:239–249

    Article  Google Scholar 

  59. Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol 250:97–115

    PubMed  Article  Google Scholar 

  60. Voss JD, Richardson LL (2006) Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25:569–576

    Article  Google Scholar 

  61. Whitefield P, Gradner T, Vives SP et al (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297

    Article  Google Scholar 

  62. Whitfield PE, Hare PE, David AW et al (2007) Abundance estimates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biol Invasions 9:53–64

    Article  Google Scholar 

  63. Wulff JL (2006) Ecological interactions of marine sponges. Can J Zool 84:146–166

    Article  Google Scholar 

  64. Yentsch CS, Yentsch CM, Phinney DA et al (2004) The odyssey of new production. J Exp Mar Biol Ecol 300:15–30

    Article  Google Scholar 

Download references

Acknowledgments

We thank our colleagues N. Alvarado, E. Kintzing, B. Kakuk, and M. Lombardi for assistance on our deep technical dives, and D.J. Gochfeld and C.M. Diaz for additional field and laboratory support. We also thank Dr. Miquel De Cáceres Ainsa for his help with the STImodels and cascadeKM functions in R. This project was funded by grants from the NOAA Ocean Exploration and National Undersea Research Programs, NOAA’s National Institute for Undersea Science and Technology and the National Science Foundation. The views expressed herein are those of the authors and do not necessarily reflect the views of these agencies. All experiments conducted for this study comply with the current laws of the Bahamas and the United States of America.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael P. Lesser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lesser, M.P., Slattery, M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13, 1855–1868 (2011). https://doi.org/10.1007/s10530-011-0005-z

Download citation

Keywords

  • Lionfish
  • Coral reefs
  • Mesophotic
  • Phase shifts
  • Herbivory
  • Mezograzers