Skip to main content

Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function

Abstract

Biological invasions can alter ecosystem functions such as litter decomposition and nutrient cycling, but little is known about how invader abundance influences the impact on the ecosystem. It is often assumed that impacts are proportional to invasion density, but this assumption has never been tested and has little justification. We tested the hypothesis that the microbial community structure and function of a mixed hardwood forest soil changed after invasion by Japanese barberry (Berberis thunbergii), an invasive shrub commonly found in eastern hardwood forests, and that changes were proportional to the density of invasion. We constructed microcosms with mixtures of native and invasive leaf litter, and measured microbial community structure (phospholipid fatty acids) and function (litter decomposition). Decomposition was linearly related to the degree of invasion (R 2 = 0.945), but the ratio of bacteria to fungi exhibited a strongly non-linear, threshold response (R 2 = 0.513). These results indicate that impacts of Japanese barberry invasion are not always proportional to invasion density. This finding has implications for the study of biological invasions as well as practical implications for the management of exotic invasive species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415

    CAS  Article  Google Scholar 

  • Bardgett RD, McAlister E (1999) The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–290

    Article  Google Scholar 

  • Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030

    CAS  Article  Google Scholar 

  • Bardgett RD, Yeates GW, Anderson JM (2005) Patterns and determinants of soil biological diversity. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, p 411

    Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter. Decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin

    Google Scholar 

  • Boyle SA, Yarlwood RR, Bottomley P, Myrold D (2008) Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biol Biochem 40:443–451

    CAS  Article  Google Scholar 

  • Bradley K, Drijber RA, Knops JMH (2006) Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 38:1583–1595

    CAS  Article  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659

    Article  PubMed  Google Scholar 

  • Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104:17300–17304

    CAS  Article  PubMed  Google Scholar 

  • Brown PR, Huth NI, Banks PB, Singleton GR (2007) Relationship between abundance of rodents and damage to agricultural crops. Agric Ecosyst Environ 120:405–415

    Article  Google Scholar 

  • Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biol Biochem 40:271–289

    CAS  Article  Google Scholar 

  • Cotrufo MF, Del Galdo I, Piermatteo D (2009) Litter decomposition: concepts, methods and future perspectives. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 76–90

    Google Scholar 

  • Crooks J (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • Demoling F, Nilsson LO, Bååth E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–379

    CAS  Article  Google Scholar 

  • Doak DF, Estes JA, Halpern BS, Jacob U, Lindberg DR, Lovvorn J, Monson DH, Tinker MT, Williams TM, Wootton JT, Carroll I, Emmerson M, Micheli F, Novak M (2008) Understanding and predicting ecological dynamics: are major surprises inevitable? Ecology 89:952–961

    Article  PubMed  Google Scholar 

  • Ehrenfeld J (1999) Structure and dynamics of populations of Japanese barberry (Berberis thunbergii DC.) in deciduous forests of New Jersey. Biol Invasions 1:203–213

    Article  Google Scholar 

  • Ehrenfeld J, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300

    Article  Google Scholar 

  • Ehrenfeld J, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    CAS  Article  Google Scholar 

  • Habekost M, Eisenhauer N, Scheu S, Steinbeiss S, Weigelt A, Gleixner G (2008) Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biol Biochem 40:2588–2595

    CAS  Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phytol 160:225–238

    Article  Google Scholar 

  • Högberg MN, Chen Y, Högberg P (2007) Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests. Biol Fertil Soils 44:363–366

    Article  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2003) Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137:578–586

    Article  PubMed  Google Scholar 

  • Hsieh C, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435:336–340

    CAS  Article  PubMed  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  • Keith AM, Brooker RW, Osler GHR, Chapman SJ, Burslem DFRP, Van Der Wal R (2009) Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biol Biochem 41:1060–1065

    CAS  Article  Google Scholar 

  • Kenis M, Auger-Rozenberg M, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    CAS  Article  PubMed  Google Scholar 

  • Kourtev P, Ehrenfeld J, Huang W (2002) Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol Biochem 34:1207–1218

    CAS  Article  Google Scholar 

  • Kourtev P, Ehrenfeld J, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905

    CAS  Article  Google Scholar 

  • Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  • Lau JA, Strauss SY (2005) Insect herbivores drive important indirect effects of exotic plants on native communities. Ecology 86:2990–2997

    Article  Google Scholar 

  • LeMaitre DC, VanWilgen BW, Chapman RA, McKelly DH (1996) Invasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of management. J Appl Ecol 33:161–172

    Article  Google Scholar 

  • Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK. Plant Soil 281:309–324

    CAS  Article  Google Scholar 

  • Li W, Zhang C, Gao G, Zan Q, Yang Z (2007) Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant Soil 296:197–207

    CAS  Article  Google Scholar 

  • Liebhold AM, Simons EE, Sior A, Unger JD (1993) Forecasting defoliation caused by the gypsy moth from field measurements. Environ Entomol 22:26–32

    Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell Publishing, Malden

    Google Scholar 

  • Moore-Kucera J, Dick RP (2008) Application of 13C-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids. Soil Biol Biochem 40:2485–2493

    CAS  Article  Google Scholar 

  • Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492

    CAS  Article  Google Scholar 

  • Myrold D, Posavatz NR (2007) Potential importance of bacteria and fungi in nitrate assimilation in soil. Soil Biol Biochem 39:1737–1743

    CAS  Article  Google Scholar 

  • Nava-Camberos U, Riley DG, Harris MK (2001) Density-yield relationships and economic injury levels for Bemisia argentifolii (Homoptera: Aleyrodidae) in cantaloupe in Texas. J Econ Entomol 94:180–189

    CAS  Article  PubMed  Google Scholar 

  • O’Donnell AG, Colvan SR, Malosso E, Supaphol S (2005) Twenty years of molecular analysis of bacterial communities in soils and what have we learned about function? In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 44–56

    Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. R package version 1.15-4. http://CRAN.R-project.org/package=vegan

  • Parker I, Simberloff D, Lonsdale W, Goodell K, Wonham M, Kareiva P, Williamson M, von Holle B, Moyle P, Byers J, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Parsons K, Quiring D, Piene H, Moreau G (2005) Relationship between balsam fir sawfly density and defoliation in balsam fir. For Ecol Manage 205:325–331

    Article  Google Scholar 

  • Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B (2008) Labile and recalcitrant plant fractions are utilized by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40:1103–1113

    CAS  Article  Google Scholar 

  • Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc Natl Acad Sci USA 101:15130–15135

    CAS  Article  PubMed  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Poché RM, Mian MY, Haque ME, Sultana P (1982) Rodent damage and burrowing characteristics in Bangladesh wheat fields. J Wildl Manage 46:139–147

    Article  Google Scholar 

  • Pollierer MM, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Reinhart K, Packer A, Van der Putten W, Clay K (2003) Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett 6:1046–1050

    Article  Google Scholar 

  • Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshw Biol 48:972–981

    Article  Google Scholar 

  • Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer K, Harris D (1999) Soil carbon and nitrogen availability. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 258–271

    Google Scholar 

  • Romani AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Article  PubMed  Google Scholar 

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Rousk J, Bååth E (2007) Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microb Ecol 62:258–267

    CAS  Article  Google Scholar 

  • Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    CAS  Article  Google Scholar 

  • Strayer DL, Eviner V, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651

    Article  PubMed  Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of the microbial community composition. Ecology 90:441–451

    Article  PubMed  Google Scholar 

  • Vitousek P, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • White DC, Ringelberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas A, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, Oxford, p 255

    Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Wootton JT (1994) The nature and consequences of indirect effects in natural communities. Annu Rev Ecol Syst 25:443–466

    Article  Google Scholar 

  • Yokomizo H, Possingham HP, Thomas MB, Buckley YM (2009) Managing the impact of invasive species: the value of knowing the density-impact curve. Ecol Appl 19:376–386

    Article  PubMed  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of N-15-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123:550–559

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter Morin for the use of his laboratory incubator, Drs. Max Häggblom and Shen Yu for help with the PLFA analysis, Ai Wen for help in the field and lab, and Cathleen McFadden for elemental analysis. The manuscript was improved by helpful comments from Johannes Knops, members of the Joan Ehrenfeld and Julie Lockwood labs, and two anonymous reviewers. Funding for this research was provided by a National Science Foundation grant to J.G.E. (DEB-0309047) and a National Science Foundation Graduate Research Fellowship to K.J.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Elgersma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elgersma, K.J., Ehrenfeld, J.G. Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function. Biol Invasions 13, 757–768 (2011). https://doi.org/10.1007/s10530-010-9866-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9866-9

Keywords

  • Invasive plants
  • Abundance
  • Impact
  • Density dependence
  • Nonlinear dynamics
  • Litter decomposition
  • Phospholipid fatty acids
  • Soil microbial community
  • Berberis thunbergii