Biological Invasions

, Volume 13, Issue 1, pp 177–187

Do non-native earthworms in Southeast Alaska use streams as invasional corridors in watersheds harvested for timber?

  • David M. Costello
  • Scott D. Tiegs
  • Gary A. Lamberti
Original Paper


Exotic earthworms from Europe and Asia have invaded previously earthworm-free areas of North America where they consume leaf litter, mix soil horizons, and alter nutrient cycling. Primarily, earthworm introductions occur through human activities; we hypothesized that the combination of logging (i.e., road construction and soil disturbance) and stream transport (i.e., hydrochory) allows earthworms to invade new ecosystems and spread within watersheds. On Prince of Wales Island, AK, we surveyed riparian zones in 11 watersheds with varying timber harvest intensity for terrestrial oligochaetes. Additionally, common invasive earthworms were experimentally submerged in a local stream to test for tolerance to prolonged immersion: all taxa survived immersion for at least 6 days. Using principal components analysis, watershed and harvest variables describing the watersheds upstream of our sampled riparian areas were reduced to two principal components describing harvest intensity (PC1) and harvest style (PC2). Logistic models successfully predicted earthworm abundance (r2 = 0.70) from PC1, which indicated that watersheds with older, intense upstream timber harvest contained larger earthworm populations. Earthworm species richness was best predicted by PC2 (r2 = 0.39), which suggested that earthworm communities in watersheds containing large clear-cut stands were more species-rich. Collectively, these results suggest that (1) invasive earthworms may use streams for dispersal and (2) upstream introductions via timber harvest can initiate downstream earthworm invasions. Hydrochory would allow invasive earthworms to spread at rates (tens of km d−1) that are much greater than previously reported rates of terrestrial spread (5–10 m y−1). Effective control of exotic earthworms in riparian zones will require watershed-level management and surveillance.


Lumbricidae Hydrochory Invasion dynamics Aquatic-terrestrial interactions Forest management Principal components analysis 

Supplementary material

10530_2010_9800_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 40 kb)


  1. Bardgett RD, Anderson JM, Behan-Pelletier V, Brussaard L, Coleman DC, Ettema C, Moldenke A, Schimel JP, Wall DH (2001) The influence of soil biodiversity on hydrological pathways and the transfer of materials between terrestrial and aquatic ecosystems. Ecosystems 4:421–429. doi:10.1007/s10021-001-0020-5 CrossRefGoogle Scholar
  2. Blair JM, Parmelee RW, Lavelle P (1995) Influences of earthworms on biogeochemistry. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. CRC Press, Boca Raton, FL, pp 127–158Google Scholar
  3. Bohlen PJ, Pelletier DM, Groffman PM, Fahey TJ, Fisk MC (2004a) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27. doi:10.1007/s10021-003-0127-y CrossRefGoogle Scholar
  4. Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM, Parkinson D (2004b) Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2:427–435. doi:10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2 CrossRefGoogle Scholar
  5. Burtelow AE, Bohlen PJ, Groffman PM (1998) Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl Soil Ecol 9:197–202. doi:10.1016/S0929-1393(98)00075-4 CrossRefGoogle Scholar
  6. Callaham MA, González G, Hale CM, Heneghan L, Lachnicht SL, Zou X (2006) Policy and management responses to earthworm invasions in North America. Biol Invasions 8:1317–1329. doi:10.1007/s10530-006-9016-6 CrossRefGoogle Scholar
  7. Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forest of Alberta: insights into introduction mechanism. Mol Ecol 17:1189–1197. doi:10.1111/j.1365-294X.2007.03603.x CrossRefPubMedGoogle Scholar
  8. Costello DM, Lamberti GA (2008) Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems. Oecologia 158:499–510. doi:10.1007/s00442-008-1149-0 CrossRefPubMedGoogle Scholar
  9. Costello DM, Lamberti GA (2009) Biological and physical effects of non-native earthworms on nitrogen cycling in riparian soils. Soil Biol Biochem 41:2230–2235. doi:10.1016/j.soilbio.2009.08.007 CrossRefGoogle Scholar
  10. Dash M (1990) Oligochaeta: Enchytraeidae. In: Dindal DL (ed) Soil biology guide. Wiley, New York, NY, pp 311–340Google Scholar
  11. Davis CA, Austin JE, Buhl DA (2006) Factors influencing soil invertebrate communities in riparian grasslands of the central Platte River floodplain. Wetlands 26:438–454. doi:10.1672/0277-5212(2006)26[438:FISICI]2.0.CO;2 CrossRefGoogle Scholar
  12. Deal RL, Hennon PE, Orlikowska EH, D’Amore DV (2004) Stand dynamics of mixed red alder—conifer forests of southeast Alaska. Can J Forest Res 34:969–980. doi:10.1139/X04-002 CrossRefGoogle Scholar
  13. Dymond P, Scheu S, Parkinson D (1997) Density and distribution of Dendrobaena octaedra (Lumbricidae) in aspen and pine forests in the Canadian Rocky Mountains (Alberta). Soil Biol Biochem 29:265–273. doi:10.1016/S0038-0717(96)00052-1 CrossRefGoogle Scholar
  14. Edwards CA (2004) Earthworm ecology. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  15. Fender WM (1995) Native earthworms of the Pacific Northwest: an ecological overview. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. CRC Press, Boca Raton, FL, pp 53–66Google Scholar
  16. Fender WM, McKey-Fender D (1990) Oligochaeta: Megascolecidae and other earthworms from Western North America. In: Dindal DL (ed) Soil biology guide. Wiley, New York, NY, pp 357–386Google Scholar
  17. Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L, Bohlen PJ, Reich PB (2006) Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol Invasions 2006:1235–1245. doi:10.1007/s10530-006-9019-3 CrossRefGoogle Scholar
  18. Greiner HG, Costello DM, Tiegs SD (2010) Allometric estimation of earthworm ash-free dry mass from diameters and lengths of select Megascolecid and Lumbricid species. Pedobiologia 53:247–252. doi:10.1016/j.pedobi.2009.12.004 CrossRefGoogle Scholar
  19. Hale CM (2007) Earthworms of the great lakes. Kollath and Stensaas, Duluth, MNGoogle Scholar
  20. Hale CM, Frelich LE, Reich PB (2005a) Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecol Appl 15:848–860. doi:10.1890/03-5345 CrossRefGoogle Scholar
  21. Hale CM, Frelich LE, Reich PB, Pastor J (2005b) Effects of European earthworm invasion on soil characteristics in Northern hardwood forests of Minnesota, USA. Ecosystems 8:911–927. doi:10.1007/s10021-005-0066-x CrossRefGoogle Scholar
  22. Hendrix PF, Callaham MA, Drake JM, Huang C-Y, James SW, Snyder BA, Zhang W (2008) Pandora’s box contained bait: the global problem of introduced earthworms. Annu Rev Ecol Evol Syst 39:593–613. doi:10.1146/annurev.ecolsys.39.110707.173426 CrossRefGoogle Scholar
  23. Kalisz PJ, Dotson DB (1989) Land-use history and the occurrence of exotic earthworms in the mountains of Eastern Kentucky. Am Midl Nat 122:288–297. doi:10.1023/A:1010048909563 CrossRefGoogle Scholar
  24. Keller RP, Cox AN, Van Loon C, Lodge DM, Herborg L-M, Rothlisberger J (2007) From bait shops to forest floor: earthworm use and disposal by anglers. Am Midl Nat 158:321–328. doi:10.1674/0003-0031(2007)158[321:FBSTTF]2.0.CO;2 CrossRefGoogle Scholar
  25. Knollenberg WG, Merritt RW, Lawson DL (1985) Consumption of leaf litter by Lumbricus terrestris (Oligochaeta) on a Michigan woodland floodplain. Am Midl Nat 113:1–6. doi:10.2307/2425341 CrossRefGoogle Scholar
  26. Lewis MA (1997) Variability, patchiness, and jump dispersal in the spread of an invading population. In: Tilman DG, Kareiva P (eds) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, NJ, USA, pp 46–69Google Scholar
  27. Marinissen JCY, van den Bosch F (1992) Colonization of new habitats by earthworms. Oecologia 91:371–376. doi:10.1007/BF00317626 CrossRefGoogle Scholar
  28. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. doi:10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  29. Merritt DM, Wohl EE (2002) Processes governing hydrochloric along rivers: hydraulics, hydrology, and dispersal phenology. Ecol Appl 12:1071–1087. doi:10.1890/1051-0761(2002)012[1071:PGHARH]2.0.CO;2 CrossRefGoogle Scholar
  30. Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation and management of streamside communities. Elsevier, Burlington, MAGoogle Scholar
  31. Nilsson C, Gardfjell M, Grelsson G (1991) Importance of hydrochloric in structuring plant communities along rivers. Can J Botany 69:2631–2633. doi:10.1139/b91-328 CrossRefGoogle Scholar
  32. R Core Development Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  33. Reynolds JW (1977) The earthworms (Lumbricidae and Sparganophilidae) of Ontario. Royal Ontario Museum, Toronto, CAGoogle Scholar
  34. Reynolds JW (1995) Status of exotic earthworm systematics and biogeography in North America. In: Hendrix PF (ed) Earthworm Ecology and Biogeography in North America. CRC Press, Boca Raton, FL, pp 1–28Google Scholar
  35. Reynolds JW, Wetzel MJ (2008) Terrestrial oligochaeta (Annelida: Clitellata) in North America, including Mexico, Puerto Rico, Hawaii, and Bermuda. Megadrilogica 12:157–210Google Scholar
  36. Roots BI (1956) The water relations of earthworms: II. Resistance to desiccation and immersion, and behaviour when submerged and when allowed choice of environment. J Exp Biol 33:29–44Google Scholar
  37. Rota E (2001) Oversized enchytraeids (Annelida, Clitellata): a comparative study with a revised rescription of Lumbricillus maximus (Michaelsen). Org Divers Evol 1:225–238. doi:10.1078/1439-6092-00019 CrossRefGoogle Scholar
  38. Rota E, Brinkhurst RO (2000) Mesenchytraeus antaeus, a new giant enchytraeid (Annelida, Clitellata) from the temperate rainforest of British Columbia, Canada, with revised diagnosis of the genus Mesenchytraeus. J Zool 252:27–40. doi:10.1111/j.1469-7998.2000.tb00817.x CrossRefGoogle Scholar
  39. Schwert DP, Dance KW (1979) Earthworm cocoons as a drift component in a Southern Ontario stream. Can Field Nat 93:180–183Google Scholar
  40. Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton 216 ppGoogle Scholar
  41. Terhivuo J, Saura A (2006) Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol Invasions 8:1205–1218CrossRefGoogle Scholar
  42. Terhivuo J, Lundqvist E, Saura A (2002) Clone diversity of Eiseniella tetraedra (Oligochaeta: Lumbricidae) along regulated and free-flowing boreal rivers. Ecography 25:714–720. doi:10.1034/j.1600-0587.2002.250607.x CrossRefGoogle Scholar
  43. Tiegs SD, Chaloner DT, Levi PS, Rüegg J, Tank JL, Lamberti GA (2008) Timber harvest transforms ecological roles of salmon in southeast Alaska rain forest streams. Ecol Appl 18:4–11. doi:10.1890/07-0655.1 CrossRefPubMedGoogle Scholar
  44. Tomlin AD, Shipitalo MJ, Edwards WM, Protz R (1995) Earthworms and their influence on soil structure and infiltration. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. CRC Press, Boca Raton, FL, pp 159–184Google Scholar
  45. Turner JS (2000) The extended organism: the physiology of animal-built structures. Oxford University Press, Cambridge, MAGoogle Scholar
  46. U.S. Forest Service (1997) Tongass land management plan revision. Final environmental impact statement, region 10 (Alaska Region). U.S. Department of Agriculture, U.S. Forest Service, JuneauGoogle Scholar
  47. Ward JV (1976) Lumbricide earthworm populations in a Colorado mountain river. Southwest Nat 21:71–78. doi:10.2307/3670326 CrossRefGoogle Scholar
  48. Zimmer M, Kautz G, Topp W (2005) Do woodlice and earthworms interact synergistically in leaf litter decomposition? Funct Ecol 19:7–16. doi:10.1111/j.0269-8463.2005.00926.x CrossRefGoogle Scholar
  49. Zorn MI, van Gestel CAM, Eijackers H (2005) Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil. Pedobiologia 49:189–198. doi:10.1016/j.pedobi.2004.08.004 CrossRefGoogle Scholar
  50. Zorn MI, Van Gestel CAM, Morrien E, Wagenaar M, Eijackers H (2008) Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa, and Lumbricus rubellus, in a laboratory-controlled environment. Soil Biol Biochem 40:587–593. doi:10.1016/j.soilbio.2007.06.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • David M. Costello
    • 1
    • 3
  • Scott D. Tiegs
    • 2
  • Gary A. Lamberti
    • 1
  1. 1.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Department of Biological SciencesOakland UniversityRochesterUSA
  3. 3.School of Natural Resources and EnvironmentUniversity of MichiganAnn ArborUSA

Personalised recommendations