Skip to main content

Advertisement

Log in

Habitat manipulation to mitigate the impacts of invasive arthropod pests

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Exotic invaders are some of the most serious insect pests of agricultural crops around the globe. Increasingly, the structure of landscape and habitat is recognized as having a major influence on both insect pests and their natural enemies. Habitat manipulation that aims at conserving natural enemies can potentially contribute to safer and more effective control of invasive pests. In this paper, we review habitat management experiments, published during the last 10 years, which have aimed to improve biological control of invasive pests. We then discuss during what conditions habitat management to conserve natural enemies is likely to be effective and how the likelihood of success of such methods can be improved. We finally suggest an ecologically driven research agenda for habitat management programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Aquilono KM, Cardinale BJ, Ives AR (2005) Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. Oikos 108:275–282

    Article  Google Scholar 

  • Araj SA, Wratten SD, Lister AJ, Buckley HL (2008) Floral diversity, parasitoids and hyperparasitoids—a laboratory approach. Basic Appl Ecol 9:588–597

    Article  Google Scholar 

  • Araj SA, Wratten SD, Lister AJ, Buckley HL (2009) Adding floral resources to improve biological control: Potential pitfalls of the fourth trophic level. Basic Appl Ecol 10:554–562

    Article  Google Scholar 

  • Baggen LR, Gurr GM (1998) The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biol Control 11:9–17

    Article  Google Scholar 

  • Baggen LR, Gurr GM, Meats A (1999) Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomol Exp et Appl 91:155–161

    Article  Google Scholar 

  • Barbosa P (1998) Conservation biological control. Academic Press, Sandiego

    Google Scholar 

  • Begum M, Gurr GM, Wratten SD, Hedberg PR, Nicol HI (2006) Using selective food plants to maximize biological control of vineyard pests. J Appl Ecol 43:547–554

    Article  Google Scholar 

  • Berndt LA, Wratten SD (2005) Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol Control 32:65–69

    Article  Google Scholar 

  • Berndt LA, Wratten SD, Hassan PG (2002) Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agric Forest Entomol 4:39–45

    Article  Google Scholar 

  • Berndt LA, Wratten SD, Scarratt SL (2006) The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera: Tortricidae) in New Zealand vineyards. Biol Control 37:50–55

    Article  Google Scholar 

  • Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408

    Article  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727

    Article  CAS  Google Scholar 

  • Bianchi FJJA, Goedhart PW, Baveco JM (2008) Enhanced pest control in cabbage crops near forest in The Netherlands. Landsc Ecol 23:595–602

    Article  Google Scholar 

  • Bommarco R (1998) Reproduction and energy reserves of a predatory carabid beetle relative to agroecosystem complexity. Ecol Appl 8:846–853

    Article  Google Scholar 

  • Braman SK, Pendley AF, Corley W (2002) Influence of commercially available wildflower mixes on beneficial arthropod abundance and predation in turfgrass. Environ Entomol 31:564–572

    Article  Google Scholar 

  • Brown MW, Mathews CR (2007) Conservation biological control of Rosy apple aphid, Dysaphis plantaginea (Passerini), in Eastern North America. Environ Entomol 36:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy EJ, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Chalcraft DR, Resetarits WJ (2003) Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84:2407–2418

    Article  Google Scholar 

  • Collins KL, Boatman ND, Wilcox A, Holland JM, Chaney K (2002) Influence of beetle banks on cereal aphid predation in winter wheat. Agric Ecosyst Environ 93:337–350

    Article  Google Scholar 

  • Corbett A, Rosenheim JA (1996) Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol Entomol 21:155–164

    Article  Google Scholar 

  • Costamagna AC, Landis DA, Brewer MJ (2008) The role of natural enemy guilds in Aphis glycines suppression. Biol Control 45:368–379

    Article  Google Scholar 

  • Cullen R, Warner KD, Jonsson M, Wratten SD (2008) Economics and adoption of conservation biological control. Biol Control 45:272–280

    Article  Google Scholar 

  • Danthanarayana W (1975) The bionomics, distribution and host range of the light brown apple moth, Epiphyas postvittana (Walk.) (Tortricidae). Aust J Zool 23:419–437

    Article  Google Scholar 

  • Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen and Co Ltd, London

    Google Scholar 

  • Eubanks MD, Styrsky JD (2005) Effects of plant feeding on the performance of omnivorous ‘predators’. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 148–177

    Chapter  Google Scholar 

  • Fiedler AK, Landis DA (2007a) Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environ Entomol 36:751–765

    Article  PubMed  CAS  Google Scholar 

  • Fiedler AK, Landis DA (2007b) Plant characteristics associated with natural enemy abundance at Michigan native plants. Environ Entomol 36:878–886

    Article  PubMed  CAS  Google Scholar 

  • Fiedler AK, Landis DA, Wratten SD (2008) Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol Control 45:254–271

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  PubMed  CAS  Google Scholar 

  • Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  • Finke DL, Denno RF (2006) Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149:265–275

    Article  PubMed  Google Scholar 

  • Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Frank SD, Shrewsbury PM (2004) Effect of conservation strips on the abundance and distribution of natural enemies and predation of Agrotis ipsilon (Lepidoptera: Noctuidae) on golf course fairways. Environ Entomol 33:1662–1672

    Article  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009a) Landscape diversity enhances the biological control of an introduced crop pest in the north-central U.S. Ecol Appl 19:143–154

    Article  PubMed  CAS  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, Schmidt N, O’Neal M, Mueller E, Chacon J, Heimpel GE, Difonzo CD (2009b) Landscape composition influences patterns of native and exotic lady beetle abundance. Divers Distrib 15:554–564

    Article  Google Scholar 

  • Greathead DJ, Greathead AH (1992) Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf 13:61N–68N

    Google Scholar 

  • Griffiths GJK, Holland JM, Bailey A, Thomas MB (2008) Efficacy and economics of shelter habitats for conservation biological control. Biol Control 45:200–209

    Article  Google Scholar 

  • Gurr GM, Wratten SD (1999) ‘Integrated biological control’: a proposal for enhancing success in biological control. Int J Pest Manag 45:81–84

    Article  Google Scholar 

  • Gurr GM, Wratten SD (2000) Biological control: measures of success. Kluwer, Dordrecht

    Google Scholar 

  • Gurr GM, Wratten SD, Barbosa P (2000) Success in conservation biological control of arthropods. In: Gurr GM, Wratten SD (eds) Biological control: measures of success. Kluwer, Dordrecht, pp 105–132

    Google Scholar 

  • Gurr GM, Wratten SD, Altieri MA (2004) Ecological engineering for pest management. CSIRO Publishing, Collingwood

    Google Scholar 

  • Gurr GM, Wratten SD, Tylianakis JM, Kean J, Keller M (2005) Providing plant foods for natural enemies in farming systems: balancing practicalities and theory. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its application. Cambridge University Press, Cambridge, pp 326–347

    Chapter  Google Scholar 

  • Heimpel GE, Jervis MA (2005) Does floral nectar improve biological control by parasitoids? In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its application. Cambridge University Press, Cambridge, pp 267–304

    Chapter  Google Scholar 

  • Hossain Z, Gurr GM, Wratten SD, Raman A (2002) Habitat manipulation in lucerne Medicago sativa: arthropod population dynamics in harvested and ‘refuge’ crop strips. J Appl Ecol 39:445–454

    Article  Google Scholar 

  • Irvin NA, Scarratt SL, Wratten SD, Frampton CM, Chapman RB, Tylianakis JM (2006) The effects of floral understoreys on parasitism of leafrollers (Lepidoptera: Tortricidae) on apples in New Zealand. Agric Forest Entomol 8:25–34

    Article  Google Scholar 

  • Isaacs R, Tuell J, Fiedler A, Gardiner MM, Landis DA (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ 7:196–203

    Article  Google Scholar 

  • Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45:172–175

    Article  Google Scholar 

  • Jonsson M, Wratten SD, Robinson KA, Sam SA (2009) The impact of floral resources and omnivory on a four trophic level food web. Bull Entomol Res 99:275–285

    Article  PubMed  CAS  Google Scholar 

  • Kean J, Wratten S, Tylianakis J, Barlow N (2003) The population consequences of natural enemy enhancement, and implications for conservation biological control. Ecol Lett 6:604–612

    Article  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  PubMed  CAS  Google Scholar 

  • Lavandero B, Wratten SD, Shishehbor P, Worner S (2005) Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): movement after use of nectar in the field. Biol Control 34:152–158

    Article  Google Scholar 

  • Lavandero B, Wratten SD, Didham RK, Gurr GM (2006) Increasing floral diversity for selective enhancement of biological control agents: a double edged sward? Basic Appl Ecol 7:236–243

    Article  Google Scholar 

  • Lee JC, Heimpel GE (2005) Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. Biol Control 34:290–301

    Article  Google Scholar 

  • Lee JC, Heimpel GE (2008) Floral resources impact longevity and oviposition rate of a parasitoid in the field. J Appl Ecol 77:565–572

    Article  Google Scholar 

  • Leung B, Finnoff D, Shogren JF, Lodge D (2005) Managing invasive species: rules of thumb for rapid assessment. Ecol Econ 55:24–36

    Article  Google Scholar 

  • Losey JE, Denno RF (1998) Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • MacLeod A, Wratten SD, Sotherton NW, Thomas MB (2004) ‘Beetle banks’ as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric Forest Entomol 6:147–154

    Article  Google Scholar 

  • Menzler-Hokkanen I (2006) Socioeconomic significance of biological control. In: Eilenberg J, Hokkanen HMT (eds) An ecological and societal approach to biological control. Springer, Dordrecht, pp 13–25

    Chapter  Google Scholar 

  • Öberg S, Ekbom B, Bommarco R (2007) Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric Ecosyst Environ 122:211–219

    Article  Google Scholar 

  • Paoletti MG, Pimentel D (2000) Environmental risks of pesticides versus genetic engineering for agricultural pest control. J Agric Environ Ethics 12:279–303

    Article  Google Scholar 

  • Pfiffner L, Wyss E (2004) Use of sown wildflower strips to enhance natural enemies of agricultural pests. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management. CSIRO Publishing, Melbourne, pp 165–186

    Google Scholar 

  • Pickett CH, Bugg RL (1998) Enhancing biological control—habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley

    Google Scholar 

  • Pimentel D (1961) Species diversity and insect population outbreaks. Ann Entomol Soc Am 54:76–86

    Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Prasad RP, Snyder WE (2006) Polyphagy complicates conservation biological control that targets generalis predators. J Appl Ecol 43:343–352

    Article  Google Scholar 

  • Ranjan R, Marshall E, Shortle J (2008) Optimal renewable resource management in the presence of endogenous risk of invasion. Ecol Econ 89:273–283

    Google Scholar 

  • Rebek EJ, Sadof CS, Hanks LM (2006) Influence of floral resource plants on control of an armored scale pest by the parasitoid Encarsia citrina (Craw.) (Hymenoptera: Aphelinidae). Biol Control 37:320–328

    Article  Google Scholar 

  • Robinson KA, Jonsson M, Wratten SD, Wade MR, Buckley HL (2008) Implications of floral resources for predation by an omnivorous lacewing. Basic Appl Ecol 9:172–181

    Article  Google Scholar 

  • Rogers ME, Potter DA (2004) Potential for sugar sprays and flowering plants to increase parasitism of white grubs (Coleoptera: Scarabaeidae) by Tiphiid wasps (Hymenoptera: Tiphiidae). Environ Entomol 33:619–626

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Roschewitz I, Thies C, Tscharntke T (2005) Are landscape complexity and farm specialisation related to land-use intensity of annual crop fields? Agric Ecosyst Environ 105:87–99

    Article  Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of a herbivore population. Oecologia 96:439–449

    Article  Google Scholar 

  • Sandhu HS, Wratten SD, Cullen R, Case B (2008) The future of farming: the value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol Econ 64:835–848

    Article  Google Scholar 

  • Scarratt SL (2005) Enhancing the biological control of leafrollers (Lepidoptera: Tortricidae) using floral resource subsidies in an organic vineyard in Marlborough, New Zealand. Dissertation, Lincoln University, Lincoln

  • Schellhorn NA, Bellati J, Paull CA, Maratos L (2008) Parasitoid and moth movement from refuge to crop. Basic Appl Ecol 9:691–700

    Article  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287

    Article  Google Scholar 

  • Schmidt NP, O’Neal ME, Singer JW (2007) Alfalfa living mulch advances biological control of soybean aphid. Environ Entomol 36:416–424

    Article  PubMed  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 33:157–166

    Google Scholar 

  • Schmitz OJ, Suttle KB (2001) Effects of top-predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081

    Article  Google Scholar 

  • Scott RR (1984) New Zealand pest and beneficial insects. Lincoln University, College of Agriculture, Lincoln

    Google Scholar 

  • Shogren JF, Tschirhart JT (2005) Integrating ecology and economics to adress bioinvasions. Ecol Econ 52:267–271

    Google Scholar 

  • Snyder WE, Snyder GB, Finke DL, Straub CS (2006) Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789–796

    Article  PubMed  Google Scholar 

  • Spellman B, Brown MW, Mathews CR (2006) Effect of floral and extrafloral resources on predation of Aphis spiraecola by Harmonia oxyridis on Apple. Biocontrol 51:715–724

    Article  Google Scholar 

  • Stephens MJ, France CM, Wratten SD, Frampton C (1998) Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Sci Technol 8:547–558

    Article  Google Scholar 

  • Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282

    Article  PubMed  Google Scholar 

  • Straub CS, Snyder WE (2008) Increasing enemy biodiversity strengthens herbivore suppression on two plant species. Ecology 89:1605–1615

    Article  PubMed  Google Scholar 

  • Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  • Swinton SM, Lupi F, Robertson GP, Landis DA (2006) Ecosystem services from agriculture: looking beyond the usual suspects. Am J Agric Econ 88:1160–1166

    Article  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895

    Article  PubMed  CAS  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25

    Article  Google Scholar 

  • Thies C, Roshewitz I, Tscharntke T (2005) The landscape context of cereal aphid-parasitoid interactions. Proc R Soc B Biol Sci 272:203–210

    Article  Google Scholar 

  • Thomas MB, Wratten SD, Sotherton NW (1991) Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and emigration. J Appl Ecol 28:906–917

    Article  Google Scholar 

  • Thomas MB, Wratten SD, Sotherton NW (1992) Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and species composition. J Appl Ecol 29:524–531

    Article  Google Scholar 

  • Thomas SR, Goulson D, Holland JM (2001) Resource provision for farmland gamebirds: the value of beetle banks. Ann Appl Biol 139:111–118

    Article  Google Scholar 

  • Tompkins J-ML (2009) Endemic New Zealand plants for pest management in vineyards. In: 3rd International symposium on biological control of arthropods, pp 234–245

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2008) Conservation biological control and enemy diversity on a landscape scale. Biol Control 45:238–253

    Article  Google Scholar 

  • Tuell JK, Fiedler AK, Landis DA, Isaacs R (2008) Visitation by wild and managed bees (Hymenoptera: Apoidea) to Eastern U.S. native plants for use in conservation programs. Environ Entomol 37:707–718

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Wratten SD (2004) Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666

    Article  Google Scholar 

  • van Rijn PCJ, Sabelis MW (2005) Impact of plant-provided food on herbivore-carnivore dynamics. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 223–266

    Chapter  Google Scholar 

  • Wäckers FL (2004) Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol Control 29:307–314

    Article  Google Scholar 

  • Wanner H, Gu H, Dorn S (2006) Nutritional value of floral nectar sources for flight in the parasitoid wasp, Cotesia glomerata. Physiol Entomol 31:127–133

    Article  Google Scholar 

  • Warner KD (2007) Agroecology in action: extending alternative agriculture through social networks. MIT Press, Cambridge

    Google Scholar 

  • Wei Q, Walde SJ (1997) The functional response of Typhlodromus pyri to its prey, Panonychus ulmi: the effect of pollen. Exp Appl Acarol 21:677–684

    Google Scholar 

  • Wilby A, Thomas MB (2002) Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. Ecol Lett 5:353–360

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Zeddies J, Schaab RP, Neuenschwander P, Herren HR (2001) Economics of biological control of cassava mealybug in Africa. Agric Econ 24:209–219

    Article  Google Scholar 

Download references

Acknowledgments

We thank James Harwood for the opportunity to contribute to this special issue and to two anonymous reviewers for helpful comments on the manuscript. We acknowledge the following funding sources: the Tertiary Education Commission, New Zealand, through the Bio-Protection Research Centre, Lincoln University, New Zealand (Mattias Jonsson and Steve Wratten), the New Zealand Foundation for Research, Science and Technology (FRST); project LINX0303 (Steve Wratten, Ross Cullen, Jean Tompkins), Lincoln University, New Zealand, for a Post-graduate Scholarship to Jean Tompkins, USDA CSREES Risk Avoidance and Mitigation Program (2004-51101-02210), USDA NC SARE Project (LCN 04-249), USDA CSREES Arthropod and Nematode Biology (2004-35302-14811), North Central Regional IPM, NSF-LTER at Kellogg Biological Station (NSF DEB 0423627), and the Michigan Agricultural Experiment Station (Doug Landis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Jonsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonsson, M., Wratten, S.D., Landis, D.A. et al. Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol Invasions 12, 2933–2945 (2010). https://doi.org/10.1007/s10530-010-9737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9737-4

Keywords