Biological Invasions

, Volume 12, Issue 7, pp 2243–2250 | Cite as

Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis)

  • François Belzile
  • Julie Labbé
  • Marie-Claire LeBlanc
  • Claude Lavoie
Original Paper


The introduced subspecies of the common reed (Phragmites australis (Cav.) Trin. ex Steud. subsp. australis; Poaceae) is considered one of the most invasive plants in North American wetlands. Given its relatively low seed set and its tremendous capacity to spread via stolons or rhizomes, it has generally been thought that the spread of vegetative diaspores was responsible for the establishment of new populations. To test this hypothesis, we sampled a single plant from each of 345 visually-distinct common reed stands located along the shores of Lake St. François (southern Quebec, Canada). With a set of six nuclear microsatellite markers, we distinguished 134 different genotypes. The number of individuals sharing the same genotype ranged from one to 16, and averaged 2.1. Most genotypes were encountered only once. We examined the spatial distribution of the most frequent genotypes and found little evidence of clusters along the lakeshore. These data contradict the hypothesis that a common reed invasion is initiated by the introduction of vegetative diaspores from a few clones. Rather, they clearly support the alternative hypothesis that seeds were the primary diaspores responsible for the establishment of common reed populations.


Common reed Haplotype M Lake Phragmites australis Seed Wetland 



This research was financially supported (grants to F. Belzile and C. Lavoie; scholarship to J. Labbé) by the Natural Sciences and Engineering Research Council of Canada, and by the Frontenac National Park. We are grateful to M. Jean and A. Saint-Louis for laboratory assistance, and to J. Dubé for his help with statistical analyses.


  1. Benoit LK, Askins RA (1999) Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19:194–208CrossRefGoogle Scholar
  2. Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proc Natl Acad Sci USA 99:1395–1398CrossRefPubMedGoogle Scholar
  3. Brisson J, Paradis É, Bellavance M-È (2008) Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in eastern Canada: a possible consequence of global warming? Rhodora 110:225–230CrossRefGoogle Scholar
  4. Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273CrossRefGoogle Scholar
  5. Clark PJ, Evans FC (1954) Distance to the nearest neighbour as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  6. Cressie NAC (1993) Statistics for spatial data, 2nd edn. Wiley, New YorkGoogle Scholar
  7. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349CrossRefPubMedGoogle Scholar
  8. Fér T, Hroudová Z (2009) Genetic diversity and dispersal of Phragmites australis in a small river system. Aquat Bot 90:165–171CrossRefGoogle Scholar
  9. Gervais C, Trahan R, Moreno D, Drolet A-M (1993) Le Phragmites australis au Québec: distribution géographique, nombres chromosomiques, et reproduction. Can J Bot 71:1386–1393CrossRefGoogle Scholar
  10. Hanson SR, Osgood DT, Yozzo DJ (2002) Nekton use of a Phragmites australis marsh on the Hudson River, New York, USA. Wetlands 22:326–337CrossRefGoogle Scholar
  11. Hudon C, Gagnon P, Jean M (2005) Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence River (Québec, Canada). Écoscience 12:347–357CrossRefGoogle Scholar
  12. Hunter KL, Fox DA, Brown LM, Able KW (2006) Responses of resident marsh fishes to stages of Phragmites australis invasion in three mid Atlantic estuaries. Estuar Coast 29:487–498Google Scholar
  13. Ishii J, Kadono Y (2002) Factors influencing seed production of Phragmites australis. Aquat Bot 72:129–141CrossRefGoogle Scholar
  14. Jodoin Y, Lavoie C, Villeneuve P, Thériault M, Beaulieu J, Belzile F (2008) Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. J Appl Ecol 45:459–466CrossRefGoogle Scholar
  15. Keller BEM (2000) Plant diversity in Lythrum, Phragmites, and Typha marshes, Massachusetts, USA. Wetl Ecol Manag 8:391–401CrossRefGoogle Scholar
  16. Koppitz H, Kühl H (2000) To the importance of genetic diversity of Phragmites australis in the development of reed stands. Wetl Ecol Manag 8:403–414CrossRefGoogle Scholar
  17. Koppitz H, Kühl H, Hesse K, Kohl J-G (1997) Some aspects of the importance of genetic diversity in Phragmites australis (Cav.) Trin. ex Steudel for the development of reed stands. Bot Acta 110:217–223Google Scholar
  18. Lathrop RG, Windham L, Montesano P (2003) Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited. Estuaries 26:423–435CrossRefGoogle Scholar
  19. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888CrossRefPubMedGoogle Scholar
  20. Lavoie C, Jean M, Delisle F, Létourneau G (2003) Exotic plant species of the St. Lawrence River wetlands: a spatial and historical analysis. J Biogeogr 30:537–549Google Scholar
  21. League MT, Colbert EP, Seliskar DM, Gallagher JL (2006) Rhizome growth dynamics of native and exotic haplotypes of Phragmites australis (common reed). Estuar Coast 29:269–276CrossRefGoogle Scholar
  22. LeBlanc M-C (2008) Quels sont les facteurs qui expliquent l’envahissement des berges du Grand lac Saint-François par le roseau commun (Phragmites australis)? M. ATDR Thesis, Université Laval, Quebec CityGoogle Scholar
  23. Lelong B, Lavoie C, Jodoin Y, Belzile F (2007) Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers Distrib 13:430–437CrossRefGoogle Scholar
  24. Lelong B, Lavoie C, Thériault M (2009) Quels sont les facteurs qui facilitent l’implantation du roseau commun (Phragmites australis) le long des routes du sud du Québec? Écoscience 16:224–237CrossRefGoogle Scholar
  25. Maheu-Giroux M, de Blois S (2007) Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landsc Ecol 22:285–301CrossRefGoogle Scholar
  26. Mal TK, Narine L (2004) The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can J Plant Sci 84:365–396Google Scholar
  27. McKee J, Richards AJ (1996) Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol 133:233–243CrossRefGoogle Scholar
  28. Minchinton TE (2006) Rafting on wrack as a mode of dispersal for plants in coastal marshes. Aquat Bot 84:372–376CrossRefGoogle Scholar
  29. Ministère du Loisir, de la Chasse et de la Pêche du Québec (1986) Parc de Frontenac: le plan directeur. Ministère du Loisir, de la Chasse et de la Pêche du Québec, Direction de l’aménagement, Service des plans directeurs, Quebec CityGoogle Scholar
  30. Moody ML, Les DH (2002) Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc Natl Acad Sci USA 99:14867–14871CrossRefPubMedGoogle Scholar
  31. Osgood DT, Yozzo DJ, Chambers RM, Jacobson D, Hoffman T, Wnek J (2003) Tidal hydrology and habitat utilization by resident nekton in Phragmites and non-Phragmites marshes. Estuaries 26:522–533CrossRefGoogle Scholar
  32. Philipp KR, Field RT (2005) Phragmites australis expansion in Delaware Bay salt marshes. Ecol Eng 25:275–291CrossRefGoogle Scholar
  33. Rice D, Rooth J, Stevenson JC (2000) Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280–299CrossRefGoogle Scholar
  34. Robertson TL, Weis JS (2005) A comparison of epifaunal communities associated with the stems of salt marsh grasses Phragmites australis and Spartina alterniflora. Wetlands 25:1–7CrossRefGoogle Scholar
  35. Robitaille A, Saucier J-P (1998) Paysages régionaux du Québec méridional. Publications du Québec, Sainte-FoyGoogle Scholar
  36. Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449CrossRefPubMedGoogle Scholar
  37. Saltonstall K (2003) A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047CrossRefGoogle Scholar
  38. Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18:1424–1434CrossRefGoogle Scholar
  39. Société des établissements de plein air du Québec (2005) Suivi des populations de roseau commun (Phragmites communis) le long du lac Saint-François. Société des établissements de plein air du Québec, Quebec CityGoogle Scholar
  40. Trebitz AS, Taylor DL (2007) Exotic and invasive aquatic plants in Great Lakes coastal wetlands: distribution and relation to watershed land use and plant richness and cover. J Great Lakes Res 33:705–721CrossRefGoogle Scholar
  41. Tulbure MG, Johnston CA, Auger DL (2007) Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. J Great Lakes Res 33(special issue 3):269–279CrossRefGoogle Scholar
  42. Warren RS, Fell PE, Grimsby JL, Buck EL, Rilling GC, Fertik RA (2001) Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24:90–107CrossRefGoogle Scholar
  43. White DA, Hauber DP, Hood CS (2004) Clonal differences in Phragmites australis from the Mississippi River delta. Southeast Nat 3:531–544CrossRefGoogle Scholar
  44. Wilcox KL, Petrie SA, Maynard LA, Meyer SW (2003) Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. J Great Lakes Res 29:664–680CrossRefGoogle Scholar
  45. Windham L, Lathrop RG (1999) Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries 26:452–464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • François Belzile
    • 1
  • Julie Labbé
    • 1
  • Marie-Claire LeBlanc
    • 2
  • Claude Lavoie
    • 2
  1. 1.Département de phytologieUniversité LavalQuebec CityCanada
  2. 2.École supérieure d’aménagement du territoire et de développement régionalUniversité LavalQuebec CityCanada

Personalised recommendations