Biological Invasions

, Volume 12, Issue 4, pp 875–891 | Cite as

Accidental transfer of non-native soil organisms into Antarctica on construction vehicles

  • K. A. HughesEmail author
  • P. Convey
  • N. R. Maslen
  • R. I. L. Smith
Original Paper


Antarctic terrestrial ecosystems currently include very few non-native species, due to the continent’s extreme isolation from other landmasses. However, the indigenous biota is vulnerable to human-mediated introductions of non-native species. In December 2005, four construction vehicles were imported by contractors to the British Antarctic Survey’s (BAS) Rothera Research Station (Antarctic Peninsula) from the Falkland Islands and South Georgia (South Atlantic) on board RRS James Clark Ross. The vehicles were contaminated with >132 kg of non-Antarctic soil that contained viable non-native angiosperms, bryophytes, micro-invertebrates, nematodes, fungi, bacteria, and c. 40,000 seeds and numerous moss propagules. The incident was a significant contravention of BAS operating procedures, the UK Antarctic Act (1994) and the Protocol on Environmental Protection to the Antarctic Treaty (1998), which all prohibit the introduction of non-native species to Antarctica without an appropriate permit. The introduction of this diverse range of species poses a significant threat to local biodiversity should any of the species become established, particularly as the biota of sub-Antarctic South Georgia is likely to include many species with appropriate pre-adaptations facilitating the colonisation of more extreme Antarctic environments. Once the incident was discovered, the imported soil was removed immediately from Antarctica and destroyed. Vehicle cleaning and transportation guidelines have been revised to enhance the biosecurity of BAS operations, and to minimise the risk of similar incidents occurring.


Antarctica Cargo Human impact Invasion Biosecurity Non-native species Sub-Antarctic Vehicles 



The authors would like to thank Richard Hall for plant preservation, Peter Fretwell for map preparation and the staff of Rothera Research Station for their assistance in this research. This paper contributes to the British Antarctic Survey’s Polar Science for Planet Earth core programmes EID-LTMS (Environment and Information Division—Long Term Monitoring and Survey) and Ecosystems, and the international SCAR EBA (Evolution and Biodiversity in Antarctica) and International Polar Year ‘Aliens in Antarctica’ research programmes.


  1. Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic chironomidae and its implications for biogeographical history. Polar Biol 29:320–326. doi: 10.1007/s00300-005-0056-7 CrossRefGoogle Scholar
  2. Andrássy I (1998) Nematodes in the sixth continent. J Nematode System Morphol 1:107–186Google Scholar
  3. Anonymous (1994) The microbiology of water 1994. Part 1—Drinking water. Methods for examination of waters and associated materials. Report on Public Heath and Medical Subjects No. 71. Her Majesty’s Stationery Office, LondonGoogle Scholar
  4. Anonymous (2008) Fissidens pungens: distribution. Available via Accessed 23 Jun 2008
  5. Antarctic Treaty Consultative Parties (1991) Protocol on environmental protection to the antarctic treaty. CM 1960. Her Majesty’s Stationery Office, LondonGoogle Scholar
  6. Bargagli R, Broady PA, Walton DWH (1996) Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica). Antarct Sci 8:121–126. doi: 10.1017/S0954102096000181 CrossRefGoogle Scholar
  7. Barnes DKA, Fraser KP (2003) Rafting by five phyla on man-made flotsam in the Southern Ocean. Mar Ecol Prog Ser 262:289–291. doi: 10.3354/meps262289 CrossRefGoogle Scholar
  8. Barnes DKA, Warren N, Webb K, Phalan B, Reid K (2004) Polar pedunculate barnacles piggy-back on pycnogona, penguins, pinniped seals and plastics. Mar Ecol Prog Ser 284:305–310. doi: 10.3354/meps284305 CrossRefGoogle Scholar
  9. Barnes DKA, Hodgeson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142. doi: 10.1111/j.1466-822X.2006.00216.x CrossRefGoogle Scholar
  10. Block W, Burn AJ, Richard KJ (1984) An insect introduction to the maritime Antarctic. Biol J Linn Soc Lond 23:33–39. doi: 10.1111/j.1095-8312.1984.tb00804.x CrossRefGoogle Scholar
  11. Boström S (1996) One new and two known nematode species from the Subantarctic Islands South Georgia and East Falkland Island. Fundam Appl Nematol 19:151–158Google Scholar
  12. Bridge PD, Clark MS, Pearce DA (2005) A new species of Paecilomyces isolated from the Antarctic springtail Cryptopygus antarcticus. Mycotaxon 92:213–222Google Scholar
  13. Bridge P, Hughes K, Denton J (2008) Association of the coprophilous fungus Pirella circinans with an indigenous beetle on the sub-Antarctic Bird Island. Polar Biol 31:657–661. doi: 10.1007/s00300-007-0403-y CrossRefGoogle Scholar
  14. British Antarctic Survey (2006) Procedures for vehicle cleaning to prevent transfer of non-native species into and around Antarctica and the sub-Antarctic islands. pp 3Google Scholar
  15. Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos Trans R Soc B-Biol Sci 362(1488):2307–2331. doi: 10.1098/rstb.2006.1949 CrossRefGoogle Scholar
  16. Chwedorzewska KJ (2008) Poa annua L. in Antarctic: searching for the source of introduction. Polar Biol 31:263–268. doi: 10.1007/s00300-007-0353-4 CrossRefGoogle Scholar
  17. Clarke LJ, Ayre J, Robinson SA (2009) Genetic structure of East Antarctic populations of the moss Ceratodon purpureus. Antarct Sci 21:51–58. doi: 10.1017/S0954102008001466 CrossRefGoogle Scholar
  18. Convey P (1992) Aspects of the biology of the midge, Eretmoptera murphyi Schaeffer, introduced to Signy Island, maritime Antarctic. Polar Biol 12:653–657. doi: 10.1007/BF00236988 CrossRefGoogle Scholar
  19. Convey P (1996) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev Camb Philos Soc 71:191–225. doi: 10.1111/j.1469-185X.1996.tb00747.x CrossRefGoogle Scholar
  20. Convey P (2001a) Antarctic ecosystems. In: Levin S (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 171–184Google Scholar
  21. Convey P (2001b) Terrestrial ecosystem responses to climate change in the Antarctic. In: Walther G-R, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change–adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42Google Scholar
  22. Convey P (2006) Antarctic climate change and its influence on terrestrial ecosystems. In: Bergstrom D, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 253–272CrossRefGoogle Scholar
  23. Convey P (2008) Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica Special Publication, Christchurch, pp 97–130Google Scholar
  24. Convey P, Block W (1996) Antarctic Diptera: ecology, physiology and distribution. Eur J Entomol 93:1–13Google Scholar
  25. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878. doi: 10.1126/science.1147261 CrossRefPubMedGoogle Scholar
  26. Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life–challenging the history of the frozen continent? Biol Rev Camb Philos Soc 83:103–117. doi: 10.1111/j.1469-185X.2008.00034.x CrossRefPubMedGoogle Scholar
  27. Coulson SJ, Hodkinson ID, Webb NR, Harrison JA (2002) Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Funct Ecol 16:353–356. doi: 10.1046/j.1365-2435.2002.00636.x CrossRefGoogle Scholar
  28. Council of Managers of National Antarctic Programs (COMNAP) (2008a) Antarctic facilities. Access via Accessed 10 Jan 2008
  29. Council of Managers of National Antarctic Programs (COMNAP) (2008b) Survey on existing procedures concerning introduction of non-native species in Antarctica. Information Paper 98, Committee for Environmental Protection XI, Antarctic Treaty Consultative Meeting XXXI, Kiev, Ukraine, pp 2–13 June 2008Google Scholar
  30. Crossley DA, Blair JM (1991) A high efficiency, low technology Tullgren-type extractor for soil microarthropods. Agric Ecosyst Environ 34:187–192. doi: 10.1016/0167-8809(91)90104-6 CrossRefGoogle Scholar
  31. Dartnall HJG (2005) Freshwater invertebrates of subantarctic South Georgia. J Nat Hist 39:3321–3342. doi: 10.1080/00222930500190186 CrossRefGoogle Scholar
  32. Dózsa-Farkas K, Convey P (1997) Christensenia, a new terrestrial enchytraeid genus from Antarctica. Polar Biol 17:482–486. doi: 10.1007/s003000050146 CrossRefGoogle Scholar
  33. Edwards JA (1979) An experimental introduction of vascular plants from South Georgia to the maritime Antarctic. Br Antarct Surv Bull 49:73–80Google Scholar
  34. Edwards JA, Greene DM (1973) The survival of Falkland Islands transplants at South Georgia and Signy Island, South Orkney Islands. Brit Antarct Surv Bull 33 & 34: 33–45Google Scholar
  35. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi: 10.1126/science.1070710 CrossRefPubMedGoogle Scholar
  36. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72. doi: 10.1017/S1464793104006542 CrossRefPubMedGoogle Scholar
  37. Frenot Y, Convey P, Lebouvier M, Chown SL, Whinam J, Selkirk PM, Skotnicki M, Bergstrom DM (2008) Antarctic and subantarctic biological invasions: sources, extents, impacts and implications. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica Special Publication, Christchurch, pp 53–96Google Scholar
  38. Greenslade P (2005) The invertebrates of Macquarie Island. Department of Environment and Heritage, Australian Antarctic Division, HobartGoogle Scholar
  39. Herbert RA (1990) Methods for enumerating microorganisms and determining biomass in natural environments. In: Grigorova R, Noris JR (eds) Methods in microbiology, Vol 22. Techniques in microbial ecology. Academic Press, London, pp 1–39Google Scholar
  40. Hooper DJ (1986) Extraction of free-living stages from soil. In: Southey JF (ed) Laboratory methods for work with plant and soil nematodes. Her Majesty’s Stationery Office, London, pp 5–30Google Scholar
  41. Hughes KA (2003) Aerial dispersal and survival of sewage-derived faecal coliforms in Antarctica. Atmos Environ 37:3147–3155. doi: 10.1016/S1352-2310(03)00207-3 CrossRefGoogle Scholar
  42. Hughes KA, Nobbs S (2004) Long-term survival of human faecal microorganisms on the Antarctic Peninsula. Antarct Sci 16:293–297. doi: 10.1017/S095410200400210X CrossRefGoogle Scholar
  43. Hughes KA, Thompson A (2004) Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environ Pollut 127:315–321. doi: 10.1016/j.envpol.2003.09.004 CrossRefPubMedGoogle Scholar
  44. Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542PubMedGoogle Scholar
  45. Hughes KA, Ott S, Bolter M, Convey P (2006) Colonisation processes. In: Bergstrom D, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Kluwer, Dordrecht, pp 35–54CrossRefGoogle Scholar
  46. International Association of Antarctica Tour Operators (2008) Tourism statistics. Available via Accessed 15 Jun 2008
  47. Japan (1996) A grass (seed plant) found in Syowa Station area, East Antarctica. Information Paper 66, Committee for Environmental Protection, Antarctic Treaty Consultative Meeting XX, Utrecht, Netherlands, 29 April–10 May 1996Google Scholar
  48. Kerry E (1990) Microorganisms colonising plants and soils subjected to different degrees of human activity, including petroleum contamination in the Vestforld Hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430Google Scholar
  49. Lee JE, Chown SL (2007) Mytilus on the move: transport of an invasive bivalve to the Antarctic. Mar Ecol Prog Ser 339:307–310. doi: 10.3354/meps339307 CrossRefGoogle Scholar
  50. Lewis PN, Riddle MJ, Smith SDA (2005) Assisted passage or passive drift: a comparison of alternative transport mechanisms for non-indigenous coastal species into the Southern Ocean. Antarct Sci 17:183–191. doi: 10.1017/S0954102005002580 CrossRefGoogle Scholar
  51. Line MA (1988) Microbial-flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biol 8:421–427. doi: 10.1007/BF00264718 CrossRefGoogle Scholar
  52. Longton RE (1967) Vegetation in the maritime Antarctic. Philos Trans R Soc Lond B Biol Sci 252:213–235. doi: 10.1098/rstb.1967.0014 CrossRefGoogle Scholar
  53. Marshall WA (1996) Biological particles over Antarctica. Nature 383:680. doi: 10.1038/383680a0 CrossRefGoogle Scholar
  54. Maslen NR (1979) Additions to the nematode fauna of the Antarctic region with keys to taxa. Br Antarct Surv Bull 49:207–229Google Scholar
  55. Maslen NR (2006) Report on soil and freshwater nematodes found in samples from Kerguelen Island (French sub-Antarctic). British Antarctic Survey consultancy reportGoogle Scholar
  56. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151. doi: 10.1016/j.soilbio.2005.12.007 Sp. IssCrossRefGoogle Scholar
  57. McGeoch MA, Chown SL, Kalwij JM (2006) A global indicator for biological invasion. Conserv Biol 20:1635–1646. doi: 10.1111/j.1523-1739.2006.00579.x CrossRefPubMedGoogle Scholar
  58. McKinney ML, Lockwood J (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi: 10.1016/S0169-5347(99)01679-1 CrossRefPubMedGoogle Scholar
  59. Olech M (1996) Human impact on terrestrial ecosystems in West Antarctica. NIPR Symposium on Polar Biology, Proceedings, 9. National Institute of Polar Research, Tokyo, pp 299–306Google Scholar
  60. Potter S (2006) The quarantine management of Australia’s Antarctic program. J Environ Manage 13:185–195Google Scholar
  61. Potter S (2007) The quarantine protection of sub-Antarctic Australia: two islands, two regimes. Isl Stud J 2:177–192Google Scholar
  62. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  63. Ryss AY, Boström S (1995) Geocenamus semicircularis (Tylenchida: Belonolaimidae) from East Falkland Island in the Subantarctic and its taxonomic status. Russ J Nematol 3:111–115Google Scholar
  64. Sjoling S, Cowan DA (2000) Detecting human bacterial contamination in Antarctic soils. Polar Biol 23:644–650. doi: 10.1007/s003000000137 CrossRefGoogle Scholar
  65. Slabber S, Chown SL (2002) The first record of a terrestrial crustacean, Porcellio scaber (Isopoda, Porcellionidae), from sub-Antarctic Marion Island. Polar Biol 25:855–858Google Scholar
  66. Smith RIL (1996) Introduced plants in Antarctica: potential impacts and conservation issues. Biol Conserv 76:135–146. doi: 10.1016/0006-3207(95)00099-2 CrossRefGoogle Scholar
  67. Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RMC, Van der Vies SM, Wolff WS (eds) Antarctic biology in a global context. Proceedings of the VIIIth SCAR International Biology Symposium, Backhuys Publishing, Leiden, pp 234–239Google Scholar
  68. Smith RIL (2005) The thermophilic bryoflora of Deception Island: unique plant communities as a criterion for designating an Antarctic specially protected area. Antarct Sci 17:17–27. doi: 10.1017/S0954102005002385 CrossRefGoogle Scholar
  69. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294. doi: 10.1002/joc.1130 CrossRefGoogle Scholar
  70. United Kingdom (2009) Procedures for vehicle cleaning to prevent transfer of non-native species into and around Antarctica. Working Paper 32. Committee for Environmental Protection XII, Antarctic Treaty Consultative Meeting XXXII, Baltimore, USA, 6–17 April 2009Google Scholar
  71. Upson R, Read DJ, Newsham KK (2007) Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytol 176:460–471. doi: 10.1111/j.1469-8137.2007.02178.x CrossRefPubMedGoogle Scholar
  72. Walther G-R, Post E, Convey P, Menel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi: 10.1038/416389a CrossRefPubMedGoogle Scholar
  73. Walton DWH, Smith RIL (1973) The status of the alien vascular flora of South Georgia. Br Antarct Surv Bull 36:79–97Google Scholar
  74. Whinam J, Chilcott N, Bergstrom DM (2005) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219. doi: 10.1016/j.biocon.2004.04.020 CrossRefGoogle Scholar
  75. Wills F (2007) Non-native species in Antarctica. A review of how the Antarctic Treaty Parties are responding to the issue through the Antarctic Treaty Consultative Meetings. University of Canterbury. Access via Accessed 23 Jul 2008

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • K. A. Hughes
    • 1
    Email author
  • P. Convey
    • 1
  • N. R. Maslen
    • 1
  • R. I. L. Smith
    • 1
  1. 1.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations