Biological Invasions

, Volume 12, Issue 3, pp 633–641 | Cite as

Long-term data on invaders: when the fox is away, the mink will play

  • Nils O. L. Carlsson
  • Jonathan M. Jeschke
  • Niklas Holmqvist
  • Jonas Kindberg
Original Paper

Abstract

Studies of the effects and population dynamics of invasive species typically cover only short time periods. However, populations of invasive species interact with native species, and these interactions may have strong effects on invaders’ populations and effects over time. We present and analyze long-term data on invasive American mink (Neovison vison), native red fox (Vulpes vulpes), and mountain hare (Lepus timidus) in Sweden. The mink’s population dynamics followed a pattern of logistic growth from the late 1930s to the late 1970s. In the early 1980s, however, the population tripled, then declined sharply. We suggest that the mink’s population tripling was caused by a drastic decline in red fox populations, which caused terrestrial prey to increase. Later recovery of the fox population reversed the trend and caused the mink population’s recent decline. Our study shows that species interactions between native and invasive species, and therefore biotic resistance, can change dramatically over time.

Keywords

Harvest data Long-term effects of invaders Non-native species Partial biotic resistance Population dynamics 

Supplementary material

10530_2009_9470_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1175 kb)

References

  1. Ahola M, Nordström M, Banks PB et al (2006) Alien mink predation induces prolonged declines in archipelago amphibians. Proc R Soc Lond B Biol Sci 273:1261–1265. doi:10.1098/rspb.2005.3455 CrossRefGoogle Scholar
  2. Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564. doi:10.1111/j.1461-0248.2004.00613.x CrossRefGoogle Scholar
  3. Banks PB, Norrdahl K, Nordström M et al (2004) Dynamic impacts of feral mink predation on vole metapopulations in the outer archipelago of the Baltic Sea. Oikos 105:79–88. doi:10.1111/j.0030-1299.2004.12855.x CrossRefGoogle Scholar
  4. Bininda-Emonds ORP (1998) Towards comprehensive phylogenies: examples within the Carnivora (Mammalia). Dissertation, University of Oxford, Oxford, UKGoogle Scholar
  5. Bisther M, Roos A (2006) Uttern i Sverige 2006. Världsnaturfonden WWF, SolnaGoogle Scholar
  6. Bonesi L, Macdonald DW (2004) Differential habitat use promotes sustainable coexistence between the specialist otter and the generalist mink. Oikos 106:509–519. doi:10.1111/j.0030-1299.2004.13034.x CrossRefGoogle Scholar
  7. Bonesi L, Palazon S (2007) The American mink in Europe: status, impacts, and control. Biol Conserv 134:470–483. doi:10.1016/j.biocon.2006.09.006 CrossRefGoogle Scholar
  8. Bonesi L, Chanin P, Macdonald DW (2004) Competition between Eurasian otter Lutra lutra and American mink Mustela vison probed by a niche shift. Oikos 106:19–26. doi:10.1111/j.0030-1299.2004.12763.x CrossRefGoogle Scholar
  9. Bonesi L, Strachan R, Macdonald DW (2006) Why are there fewer signs of mink in England? Considering multiple hypotheses. Biol Conserv 130:268–277. doi:10.1016/j.biocon.2005.12.021 CrossRefGoogle Scholar
  10. Carlsson NOL, Sarnelle O, Strayer DL (2009) Native predators and exotic prey—an acquired taste? Front Ecol Environ 7. doi: 10.1890/070089
  11. Cattadori IM, Haydon DT, Thirgood SJ et al (2003) Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 100:439–446. doi:10.1034/j.1600-0706.2003.12072.x CrossRefGoogle Scholar
  12. Caut S, Angulo E, Courchamp F (2008) Dietary shift of an invasive predator: rats, seabirds and sea turtles. J Appl Ecol 45:428–437. doi:10.1111/j.1365-2664.2007.01438.x CrossRefPubMedGoogle Scholar
  13. Chapron G, Andrén H, Liberg O (2008) Conserving top predators in ecosystems. Science 320:47. doi:10.1126/science.320.5872.47a CrossRefPubMedGoogle Scholar
  14. Doucett RR, Marks JC, Blinn DW et al (2007) Measuring subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88:1587–1592. doi:10.1890/06-1184 CrossRefPubMedGoogle Scholar
  15. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  16. Erlinge S (1969) Food habits of the otter Lutra lutra L. and the mink Mustela vison Schreber in a trout water in southern Sweden. Oikos 20:1–7. doi:10.2307/3543739 CrossRefGoogle Scholar
  17. Ferreras P, Macdonald DW (1999) The impact of American Mink Mustela vison on water birds in the upper Thames. J Appl Ecol 36:701–708. doi:10.1046/j.1365-2664.1999.00431.x CrossRefGoogle Scholar
  18. Gerell R (1967) Food selection in relation to habitats in mink (Mustela vison Schreber) in Sweden. Oikos 18:233–246. doi:10.2307/3565101 CrossRefGoogle Scholar
  19. Glen AS, Dickman CR (2005) Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol Rev Camb Philos Soc 80:387–401. doi:10.1017/S1464793105006718 CrossRefPubMedGoogle Scholar
  20. Groombridge B (1992) Global biodiversity: status of the earth’s living resources. Chapman and Hall, LondonGoogle Scholar
  21. Jarnemo A, Liberg O (2005) Red fox removal and roe deer fawn survival—a 14 year study. J Wildl Manag 69:1090–1098. doi:10.2193/0022-541X(2005)069[1090:RFRARD]2.0.CO;2 CrossRefGoogle Scholar
  22. Jędrzejewska B, Sidorovich VE, Pikulik MM et al (2001) Feeding habits of the otter and the American mink in Białowieża primeval forest (Poland) compared to other Eurasian populations. Ecography 24:165–180. doi:10.1034/j.1600-0587.2001.240207.x CrossRefGoogle Scholar
  23. Jeschke JM (2008) Across islands and continents, mammals are more successful invaders than birds. Divers Distrib 14:913–916. doi:10.1111/j.1472-4642.2008.00488.x CrossRefGoogle Scholar
  24. Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci USA 102:7198–7202. doi:10.1073/pnas.0501271102 CrossRefPubMedGoogle Scholar
  25. Jeschke JM, Strayer DL (2006) Determinants of vertebrate invasion success in Europe and North America. Glob Change Biol 12:1608–1619. doi:10.1111/j.1365-2486.2006.01213.x CrossRefGoogle Scholar
  26. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26. doi:10.2307/3546992 CrossRefGoogle Scholar
  27. Lindström ER, Mörner T (1985) The spreading of sarcoptic mange among Swedish red foxes (Vulpes vulpes L.) in relation to fox population dynamics. Rev Ecol 40:211–216Google Scholar
  28. Lindström ER, Andrén H, Angelstam P et al (1994) Disease reveals the predator: sarcoptic mange, red fox predation, and prey population. Ecology 75:1042–1049. doi:10.2307/1939428 CrossRefGoogle Scholar
  29. Lindström ER, Brainerd SM, Helldin JO et al (1995) Pine marten—red fox interactions: a case of intraguild predation? Ann Zool Fenn 32:123–130Google Scholar
  30. Linell JDC, Strand O (2000) Interference interactions, co-existence and conservation of mammalian carnivores. Divers Distrib 6:169–176. doi:10.1046/j.1472-4642.2000.00069.x CrossRefGoogle Scholar
  31. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, MaldenGoogle Scholar
  32. Long JL (2003) Introduced mammals of the world: their history, distribution and influence. CABI Publishing, OxonGoogle Scholar
  33. MacDonald DW, Harrington LA (2003) The American mink: the triumph and tragedy of adaptation out of context. NZ J Zool 30:421–441Google Scholar
  34. MacDonald RA, O’Hara K, Morrish DJ (2007) Decline of invasive alien mink (Mustela vison) is concurrent with recovery of native otters (Lutra lutra). Divers Distrib 13:92–98Google Scholar
  35. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  36. MacPhee RDE, Flemming C (1999) Requiem aeternam: the last five hundred years of mammalian species extinctions. In: MacPhee RDE (ed) Extinctions in near time: causes, contexts, and consequences. Kluwer, New YorkGoogle Scholar
  37. Nordström M, Korpimäki E (2004) Effects of island isolation and feral mink removal on bird communities on small islands in the Baltic Sea. J Anim Ecol 73:424–433. doi:10.1111/j.0021-8790.2004.00816.x CrossRefGoogle Scholar
  38. Nordström M, Högmander J, Nummelin J et al (2002) Variable responses of waterfowl breeding populations to long-term removal of introduced American mink. Ecography 25:385–394. doi:10.1034/j.1600-0587.2002.250401.x CrossRefGoogle Scholar
  39. Nordström M, Högmander J, Laine J et al (2003) Effects of feral mink removal on seabirds, waders and passerines on small islands in the Baltic Sea. Biol Conserv 109:359–368. doi:10.1016/S0006-3207(02)00162-3 CrossRefGoogle Scholar
  40. Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508. doi:10.1086/303189 CrossRefGoogle Scholar
  41. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330. doi:10.1146/annurev.es.20.110189.001501 CrossRefGoogle Scholar
  42. Ranta E, Lindström J, Lindén H et al (2008) How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos 117:1461–1468. doi:10.1111/j.0030-1299.2008.16879.x CrossRefGoogle Scholar
  43. Salo P, Korpimäki E, Banks PB et al (2007) Alien predators are more dangerous than native predators to prey populations. Proc R Soc Lond B Biol Sci 274:1237–1243. doi:10.1098/rspb.2006.0444 CrossRefGoogle Scholar
  44. Sidorovich V, Kruuk H, Macdonald DW (1999) Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J Zool 248:521–527. doi:10.1111/j.1469-7998.1999.tb01051.x CrossRefGoogle Scholar
  45. Storch I, Lindström E, de Jounge J (1990) Diet and habitat selection of the pine marten in relation to competition with the red fox. Acta Theriol 35:311–320Google Scholar
  46. Strayer DL, Eviner VT, Jeschke JM et al (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. doi:10.1016/j.tree.2006.07.007 CrossRefPubMedGoogle Scholar
  47. Tannerfeldt M, Elmhagen B, Angerbjörn A (2002) Exclusion by interference competition? The relationship between red and arctic foxes. Oecologia 132:213–220. doi:10.1007/s00442-002-0967-8 CrossRefGoogle Scholar
  48. Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference. John Hopkins University Press, BaltimoreGoogle Scholar
  49. Winterhalder BP (1980) Canadian fur bearer cycles and Cree-Ojibwa hunting and trapping practices. Am Nat 115:870–879. doi:10.1086/283605 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nils O. L. Carlsson
    • 1
    • 2
  • Jonathan M. Jeschke
    • 2
    • 3
  • Niklas Holmqvist
    • 4
  • Jonas Kindberg
    • 4
    • 5
  1. 1.The County Administrative Board, Environmental DepartmentMalmöSweden
  2. 2.Cary Institute of Ecosystem StudiesMillbrookUSA
  3. 3.Sections of Aquatic Ecology and Evolutionary Ecology, Department of Biology IILudwig-Maximilians-University MunichPlanegg-MartinsriedGermany
  4. 4.Swedish Association for Hunting and Wildlife ManagementNyköpingSweden
  5. 5.Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations