Biological Invasions

, 12:157 | Cite as

Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France

  • Marie-Laure Desprez-LoustauEmail author
  • Régis Courtecuisse
  • Cécile Robin
  • Claude Husson
  • Pierre-Arthur Moreau
  • Dominique Blancard
  • Marc-André Selosse
  • Brigitte Lung-Escarmant
  • Dominique Piou
  • Ivan Sache
Original Paper


A first comprehensive inventory of alien fungi and fungal-like organisms (in Stramenopila) recorded in France since 1800 was established, comprising 227 species, with 64.7% plant pathogens, 29.5% saprotrophic species, 3.5% ectomycorrhizal fungi, 1.3% animal parasites and 0.9% mycopathogenic fungi. Using this and a previously built European dataset, correlates of invasion success in fungi (sensu lato) were investigated, especially for pathogenic species occurring in wild environments (mostly forest tree pathogens). Several common features were demonstrated at the two spatial scales. Some taxonomic/phylogenetic orders were shown to be over-represented in alien fungi and Stramenopila pseudo-fungi, e.g. Peronosporales and to have faster spread, e.g. Erysiphales. Residence time and economic variables, especially imports, were important explaining variables of the levels of invasion. The influence of climatic factors was also suggested.


Biological invasions Fungi Oomycota Plant pathogen Forest tree pathogen Invasion success Invasiveness 



This study was supported by funding of INRA (Call for Proposals in Epidemiology 2005) and of the European Union within the FP 6 specific targeted research project ‘DAISIE’ (SSPI-CT-2003-511202). We thank Philippe Callac, Jacques Guinberteau, Denis Tourvieille de Labrouhe and Piero Genovesi for sharing data, and Xavier Capdevielle and Annie Yart for data retrieval. The use of the Département Santé des Forêts database is gratefully acknowledged. We thank Pietr Pyšek and two anonymous reviewers for valuable comments on earlier drafts of this manuscript.

Supplementary material

10530_2009_9439_MOESM1_ESM.xls (180 kb)
(XLS 179 kb)
10530_2009_9439_MOESM2_ESM.xls (170 kb)
(XLS 170 kb)


  1. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198. doi: 10.1016/j.biocon.2006.03.023 CrossRefGoogle Scholar
  2. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544. doi: 10.1016/j.tree.2004.07.021 CrossRefPubMedGoogle Scholar
  3. Barnes I, Crous PW, Wingfield BD, Wingfield MJ (2004) Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud Mycol 50:551–565Google Scholar
  4. Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–187. doi: 10.1006/pmpp.2001.0355 CrossRefGoogle Scholar
  5. Brasier C (1999) Phytophthora pathogens of trees: their rising profile in Europe. Information Note. Forestry Commission, LondonGoogle Scholar
  6. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x CrossRefGoogle Scholar
  7. Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541. doi: 10.1126/science.1072678 CrossRefPubMedGoogle Scholar
  8. Burgess TI, Wingfield MJ, Wingfield BD (2004) Global distribution of Diplodia pinea genotypes revealed using simple sequence repeat (SSR) markers. Australas Plant Pathol 33:513–519. doi: 10.1071/AP04067 CrossRefGoogle Scholar
  9. Butin H, Kehr R (2004) Sphaceloma murrayae Jenk. and Grods., a pathogen new to Europe on Salix spp. For Pathol 34:27–31. doi: 10.1046/j.1439-0329.2003.00344.x Google Scholar
  10. Connor EF, McCoy ED (1979) The statistics and biology of the species–area relationship. Am Nat 113:791–833. doi: 10.1086/283438 CrossRefGoogle Scholar
  11. Cooke DEL, Jung T, Williams NA, Schubert R, Osswald W, Duncan JM (2005) Genetic diversity of European populations of the oak fine-root pathogen Phytophthora quercina. For Pathol 35(1):57–70. doi: 10.1111/j.1439-0329.2004.00384.x Google Scholar
  12. Courtecuisse R (1992) Le programme d’inventaire mycologique national et de cartographie des Mycota français. 1ère note: présentation générale. Bull Soc Mycol Fr 107(4):161–203Google Scholar
  13. Crous PW (2005) Impact of molecular phylogenetics on the taxonomy and diagnostics of fungi. Bull OEPP 35:47–51. doi: 10.1111/j.1365-2338.2005.00811.x Google Scholar
  14. de Jong A, Lévesque CA, Verkley GJM, Abeln ECA, Rahe JE, Braun L (2001) Phylogenetic relationships among Neofabraea species causing tree cankers and bull’s-eye rot of apple based on DNA sequencing of ITS nuclear rDNA, mitochondrial rDNA, and the beta-tubulin gene. Mycol Res 105:658–669. doi: 10.1017/S0953756201003926 CrossRefGoogle Scholar
  15. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) A century of the ornamental plant trade and its impact on invasion success. Divers Distrib 13:527–534CrossRefGoogle Scholar
  16. Desprez-Loustau ML (2008) Alien fungi of Europe. In: DAISIE (ed) Handbook of alien species in Europe. Springer, Berlin, pp 15–28Google Scholar
  17. Desprez-Loustau ML, Marçais B, Nageilesen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann Sci 63:597–612. doi: 10.1051/forest:2006040 CrossRefGoogle Scholar
  18. Desprez-Loustau ML, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo D (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480. doi: 10.1016/j.tree.2007.04.005 CrossRefPubMedGoogle Scholar
  19. Dighton J, White JF, Oudemans P (eds) (2005) The fungal community—Its organization and role in the ecosystem, 3rd edn. Taylor and Francis, Boca Raton, p 936Google Scholar
  20. Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philos Trans R Soc Lond B 356:1001–1012. doi: 10.1098/rstb.2000.0758 CrossRefGoogle Scholar
  21. Ducomet V (1925) Le mildiou du houblon, maladie nouvelle pour la France. Rev Pathol Veg Entomol Agric 12:248–254Google Scholar
  22. Ducomet V (1930) Une Urédinée nouvelle pour la France; Puccinia mirabilissima Peck., parasite du Mahonia aquifolium. Rev Pathol Veg Entomol Agric 17:256–261Google Scholar
  23. Essl F, Rabitsch W (2002) Neobiota in Österreich. Federal Environmental Agency, ViennaGoogle Scholar
  24. FAO (2008) Wheat killer detected in Iran, 5 March 2008.
  25. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi: 10.1126/science.1070710 CrossRefPubMedGoogle Scholar
  26. Gederaas L, Salvesen I, Viken Å (eds) (2007) Norsk svarteliste 2007–Økologiske risikovurderinger av fremmede arter. 2007 Norwegian black list–ecological risk analysis of Alien species. Artsdatabanken, NorwayGoogle Scholar
  27. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432. doi: 10.1017/S0953756201004725 CrossRefGoogle Scholar
  28. Hawksworth DL, Mueller GM (2005) Fungal communities: their diversity and distribution. In: Dighton J, White JF, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. Taylor and Francis, Boca Raton, pp 27–37Google Scholar
  29. Hayes KR, Barry SC (2008) Are there consistent predictors of invasion success? Biol Invasions 10:483–506. doi: 10.1007/s10530-007-9146-5 CrossRefGoogle Scholar
  30. Heim R, Brack A, Kobel H, Hofmann A, Cailleux R (1958) Déterminisme de la formation des carpophores et des sclèrotes dans la culture du Psilocybe mexicana Heim, Agaric hallucinogène du Mexique, et mise en évidence de la psilocybine et de la psilocine. Rev Mycol 22:9–16Google Scholar
  31. Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547. doi: 10.1016/j.mycres.2007.03.004 CrossRefPubMedGoogle Scholar
  32. Hill M, Baker R, Broad G, Chandler PJ, Copp GH, Ellis J, Jones D, Hoyland C, Laing I, Longshaw M, Moore N, Parrott D, Pearman D, Preston C, Smith RM, Waters R (2005) Audit of non-native species in England. English nature research reports, number 662, PeterboroughGoogle Scholar
  33. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework to better integrate pathways into policy. J Appl Ecol 45:403–414. doi: 10.1111/j.1365-2664.2007.01442.x CrossRefGoogle Scholar
  34. Ioos R, Andrieux A, Marçais B, Frey P (2006) Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genet Biol 43(7):511–529. doi: 10.1016/j.fgb.2006.02.006 CrossRefPubMedGoogle Scholar
  35. Ivors K, Garbelotto M, Vries DE, Ruyter-Spira C, Te Hekkert B, Rosenzweig N, Bonants P (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol Ecol 15:1493–1505. doi: 10.1111/j.1365-294X.2006.02864.x CrossRefPubMedGoogle Scholar
  36. Jarvis WR, Gubler WD, Grove GG (2002) Epidemiology of powdery mildews in agricultural pathosystems. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery midews—a comprehensive treaty. APS Press, St Paul, pp 169–199Google Scholar
  37. Jones DR, Baker RHA (2007) Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol 56:891–910. doi: 10.1111/j.1365-3059.2007.01619.x CrossRefGoogle Scholar
  38. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the Fungy, 10th edn. CABI, OxonGoogle Scholar
  39. Kobelt M, Nentwig W (2008) Alien spider introductions to Europe supported by global trade. Divers Distrib 14:273–280. doi: 10.1111/j.1472-4642.2007.00426.x CrossRefGoogle Scholar
  40. Kreisel H (2000) Ephemere und eingebürgerte Pilze in Deutschland. In: Mayr C, Opitz H (eds) Was macht der Halsbandsittich in der Thujahecke? Zur Problematik von Neophyten und Neozoen und ihrer Bedeutung für den Erhalt der biologischen Vielfalt. NABU-Naturschutzfachtagung Feb. 12–13 2000 in Braunschweig, Bonn, pp 73–77Google Scholar
  41. Kreisel H, Scholler M (1994) Chronology of phytoparasitic fungi introduced to Germany and adjacent countries. Bot Acta 107:387–392Google Scholar
  42. Krupa S, Bowersox V, Claybrooke R, Barnes CW, Szabo L, Harlin K, Kurle J (2006) Introduction of Asian soybean rust urediniospores into the midwestern United States—a case study. Plant Dis 90:1254–1259. doi: 10.1094/PD-90-1254 CrossRefGoogle Scholar
  43. Kutorga E (2004) Invasive fungi. Lithuanian invasive species database.
  44. Lacey L (1986) Water availability and fungal reproduction: patterns of spore production, liberation and dispersal. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 65–86Google Scholar
  45. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226. doi: 10.1016/S0006-3207(03)00294-5 CrossRefGoogle Scholar
  46. Lambdon PW (2008) Is invasiveness a legacy of evolution? phylogenetic patterns in the alien flora of Mediterranean islands. J Ecol 96:46–57Google Scholar
  47. Latijnhouwers M, de Wit PJGM, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11(10):462–469. doi: 10.1016/j.tim.2003.08.002 CrossRefPubMedGoogle Scholar
  48. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:23–28. doi: 10.1016/j.tree.2005.02.004 CrossRefGoogle Scholar
  49. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  50. Marçais B, Bergot M, Perarnaud V, Levy A, Desprez-Loustau ML (2004) Prediction and mapping of the impact of winter temperatures on the development of Phytophthora cinnamomi induced cankers on red and pedunculate oak. Phytopathology 94:826–831. doi: 10.1094/PHYTO.2004.94.8.826 CrossRefPubMedGoogle Scholar
  51. Moles AT, Gruber MAM, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17Google Scholar
  52. Monclavo JM, Buchanan PK (2008) Molecular evidence for long distance dispersal across the Southern Hemisphere in the Ganoderma applanatum-australe species complex (Basidiomycota). Mycol Res 112:425–436. doi: 10.1016/j.mycres.2007.12.001 Google Scholar
  53. Morelet M (1967) Le dépérissement des saules en France. Bull Soc Sci Nat Archeol Toulon Var 171:5Google Scholar
  54. Muehlstein LK, Porter D, Short FT (1991) Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83:180–191. doi: 10.2307/3759933 CrossRefGoogle Scholar
  55. Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458. doi: 10.2307/3761403 CrossRefGoogle Scholar
  56. Nobanis (2007) North European and Baltic network on invasive Alien species
  57. Ocasio-Morales RG, Tsopelas P, Harrington TC (2007) Origin of Ceratocystis platani on native Platanus orientalis in Greece and its impact on natural forests. Plant Dis 91(7):901–904. doi: 10.1094/PDIS-91-7-0901 CrossRefGoogle Scholar
  58. Palm ME, Rossman A (2003) Invasion pathways of terrestrial plant-inhibiting fungi. In: Ruiz G, Carlton J (eds) Invasive species: vectors and management strategies. Island Press, Washington, pp 31–43Google Scholar
  59. Parent GH, Thoen D, Calonge FD (2000) Nouvelles données sur la répartition de Clathrus archeri en particulier dans l’Ouest et le Sud-Ouest de l’Europe. Bull Soc Mycol Fr 116:241–266Google Scholar
  60. Parker IM, Gilbert GS (2004) The evolutionary ecology of novel plant–pathogen interactions. Annu Rev Ecol Evol Syst 35:675–700. doi: 10.1146/annurev.ecolsys.34.011802.132339 CrossRefGoogle Scholar
  61. Pascal M, Lorvelec O, Vigne JD (2006) Invasions biologiques et extinctions—11000 ans d’histoire des vertébrés en France. Quae and Belin, ParisGoogle Scholar
  62. Pinon J (1986) Situation de Melampsora medusae en Europe. Bull OEPP 16:547–551. doi: 10.1111/j.1365-2338.1986.tb00321.x Google Scholar
  63. Pringle A, Vellinga EC (2005) Last chance to know? using literature to explore the biogeography and invasion biology of the death cap mushroom Amanita phalloides (Vaill. ex Fr.:Fr.). Link. Biol Inv 8:1131–1144. doi: 10.1007/s10530-005-3804-2 CrossRefGoogle Scholar
  64. Purdy LH, Krupa SV, Dean JL (1985) Introduction of sugarcane rust into the Americas and its spread to Florida. Plant Dis 69:689–693. doi: 10.1094/PD-69-689 CrossRefGoogle Scholar
  65. Pyšek P, Richardson DM, Williamson M (2004) Predicting and explaining plant invasions through analysis of source flora: some critical considerations. Divers Distrib 10:179–187. doi: 10.1111/j.1366-9516.2004.00079.x CrossRefGoogle Scholar
  66. Pyšek P, Richardson DM, Pergl J, Jarošik V, Sixtovà Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244. doi: 10.1016/j.tree.2008.02.002 CrossRefPubMedGoogle Scholar
  67. Rachowicz LJ, Hero JM, Alford RA et al (2005) The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife. Conserv Biol 19:1441–1448. doi: 10.1111/j.1523-1739.2005.00255.x CrossRefGoogle Scholar
  68. Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: conceptsand definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  69. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–335. doi: 10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  70. Schmit J, Mueller G (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111. doi: 10.1007/s10531-006-9129-3 CrossRefGoogle Scholar
  71. Schrader G, Unger JG (2003) Plant quarantine as a measure against invasive alien species: the framework of the International plant protection convention and the plant health regulations in the European Union. Biol Invasions 5:357–364. doi: 10.1023/B:BINV.0000005567.58234.b9 CrossRefGoogle Scholar
  72. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi: 10.1111/j.1461-0248.2006.00910.x CrossRefPubMedGoogle Scholar
  73. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1, No. 054, pp 13Google Scholar
  74. Smith IM, Dunez J, Lelliot RA, Phillips DH, Archer SA (1988) European handbook of plant diseases. Blackwell, OxfordCrossRefGoogle Scholar
  75. Solarz W (2007) Alien species in Poland.
  76. Storfer A, Alfaro ME, Ridenhour BJ, Jancovich JK, Mech SG, Parris MJ, Collins JP (2007) Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic. Ecol Lett 10:1075–1083. doi: 10.1111/j.1461-0248.2007.01102.x CrossRefPubMedGoogle Scholar
  77. Taylor JW, Turner E, Townsend JP et al (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philosoph Trans Royal Soc London Series B Biol Sci 361(1475):1947–1963. doi: 10.1098/rstb.2006.1923 CrossRefGoogle Scholar
  78. Vacher C, Vile D, Helion E, Piou D, Desprez-Loustau ML (2008) Distribution of parasitic fungal species richness: influence of climate versus host species diversity. Divers Distrib 14:786–798. doi: 10.1111/j.1472-4642.2008.00479.x CrossRefGoogle Scholar
  79. Viennot-Bourgin G (1932) Une Ustilaginée nouvelle pour la France, Ustilago oxalidis Ellis et Tracy, parasite d’Oxalis stricta L. Rev Pathol Veg Entomol Agric 19:17–23Google Scholar
  80. Viennot-Bourgin G (1949) Les champignons parasites des plantes cultivées. Masson, ParisGoogle Scholar
  81. Viennot-Bourgin G (1964) La rouille australienne du séneçon. Rev Mycol 29:241–258Google Scholar
  82. Viljanen-Rollinson SLH, Cromey MG (2002) Pathways of entry and spread of rust pathogens: implications for New Zealand’s biosecurity. NZ Plant Prot 55:42–48Google Scholar
  83. Warnock DW, Dupont B, Kauffman CA, Sirisanthana T (1998) Imported mycoses in Europe. Med Mycol 36(Suppl. 1):87–94PubMedGoogle Scholar
  84. Weltzien HC (1978) Geographical distribution of powdery mildews. In: Spencer DM (ed) The Powdery mildews. Academic Press, London, pp 39–49Google Scholar
  85. Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10:391–398. doi: 10.1007/s10530-007-9138-5 CrossRefGoogle Scholar
  86. Wilson JRU, Richardson DM, Rouget M, Proches S, Amis MA, Henderson L, Thuillier W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 131:11–22Google Scholar
  87. Zaffarano PL, McDonald BA, Linde CC (2008) Rapid speciation following recent host shifts in the plant pathogenic fungus Rhynchosporium. Evol Int J Org Evol 62:1418–1436. doi: 10.1111/j.1558-5646.2008.00390.x Google Scholar
  88. Zentmyer GA (1980) Phytophthora cinnamomi and the diseases it causes. Monograph no. 10. Am Phytopathol Soc, St PaulGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marie-Laure Desprez-Loustau
    • 1
    Email author
  • Régis Courtecuisse
    • 2
  • Cécile Robin
    • 1
  • Claude Husson
    • 3
  • Pierre-Arthur Moreau
    • 2
  • Dominique Blancard
    • 4
  • Marc-André Selosse
    • 5
  • Brigitte Lung-Escarmant
    • 1
  • Dominique Piou
    • 6
  • Ivan Sache
    • 7
  1. 1.UMR1202 BIOGECO, Pathologie forestièreINRAVillenave d’Ornon CedexFrance
  2. 2.Faculté des sciences pharmaceutiques et biologiques, Département de BotaniqueLille CedexFrance
  3. 3.UMR1136 IAM, Équipe de Pathologie forestièreINRAChampenouxFrance
  4. 4.UMR1065 Santé VégétaleINRAVillenave d’Ornon CedexFrance
  5. 5.Centre d’Écologie Fonctionnelle et Évolutive, CNRS-UMR 5175, Équipe Interactions BiotiquesMontpellier cedex 5France
  6. 6.Département Santé des Forêts, Domaine de l’HermitagePierroton, CestasFrance
  7. 7.UMR1290 Bioger-CPP, ÉpidémiologieINRAThiverval-GrignonFrance

Personalised recommendations