Skip to main content
Log in

Non-indigenous invasive bivalves as ecosystem engineers

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Several non-indigenous bivalve species have been colonising aquatic ecosystems worldwide, in some cases with great ecological and economic impacts. In this paper, we focus on the ecosystem engineering attributes of non-indigenous invasive bivalves (i.e., the capacities of these organisms to directly or indirectly affect the availability of resources to other species by physically modifying the environment). By reviewing the ecology of several invasive bivalves we identify a variety of mechanisms via which they modify, maintain and/or create habitats. Given the usually high densities and broad spatial distributions of such bivalves, their engineering activities can significantly alter ecosystem structure and functioning (e.g., changes in sediment chemistry, grain size, and organic matter content via bioturbation, increased light penetration into the water column due to filter feeding, changes in near bed flows and shear stress due to the presence of shells, provision of colonisable substrate and refuges by shells). In addition, changes in ecosystem structure and functioning due to engineering by invasive bivalves often have very large economic impacts. Given the worldwide spread of non-indigenous bivalves and the varied ways in which they physically modify habitats, their engineering effects should receive more serious consideration in restoration and management initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aldridge DC (2000) The impacts of dredging and weed cutting on a population of freshwater mussels (Bivalvia: Unionidae). Biol Conserv 95:247–257. doi:10.1016/S0006-3207(00)00045-8

    Article  Google Scholar 

  • Aldridge DC, Elliott P, Moggridge GD (2004) The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain. Biol Conserv 119:253–261. doi:10.1016/j.biocon.2003.11.008

    Article  Google Scholar 

  • Aldridge DC, Salazar M, Serna A et al (2008) Density-dependent effects of a new invasive false mussel, Mytilopsis trautwineana (Tryon 1866), on shrimp, Litopenaeus vannamei (Boone 1931), aquaculture in Colombia. Aquaculture 281:34–42. doi:10.1016/j.aquaculture.2008.05.022

    Article  Google Scholar 

  • Armonies W (2001) What an introduced species can tell us about the spatial extension of benthic populations. Mar Ecol Prog Ser 209:289–294. doi:10.3354/meps209289

    Article  Google Scholar 

  • Bastviken DTE, Caraco NF, Cole JJ (1998) Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshw Biol 39:375–386. doi:10.1046/j.1365-2427.1998.00283.x

    Article  Google Scholar 

  • Bayne BL (1964) Primary and secondary settlement in Mytilus edulis L. (Mollusca). J Anim Ecol 33:513–523. doi:10.2307/2569

    Article  Google Scholar 

  • Beekey MA, McCabe DJ, Marsden JE (2004) Zebra mussels affect benthic predator foraging success and habitat choice on soft sediments. Oecologia 141:164–170. doi:10.1007/s00442-004-1632-1

    Article  CAS  PubMed  Google Scholar 

  • Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204. doi:10.1007/BF00384283

    Article  Google Scholar 

  • Bially A, MacIsaac HJ (2000) Fouling mussels (Dreissena spp.) colonize soft sediments in Lake Erie and facilitate benthic invertebrates. Freshw Biol 43:85–97. doi:10.1046/j.1365-2427.2000.00526.x

    Article  Google Scholar 

  • Boltovskoy D, Correa N, Cataldo D et al (2006) Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963. doi:10.1007/s10530-005-5107-z

    Article  Google Scholar 

  • Borthagaray AI, Carranza A (2007) Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta Oecol 31:243–250. doi:10.1016/j.actao.2006.10.008

    Article  Google Scholar 

  • Branch GM, Steffani CN (2004) Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J Exp Mar Biol Ecol 300:189–215. doi:10.1016/j.jembe.2003.12.007

    Article  Google Scholar 

  • Breitburg DL, Palmer MA, Loher T (1995) Larval distributions and the spatial patterns of settlement of an oyster reef fish: responses to flow and structure. Mar Ecol Prog Ser 125:45–60. doi:10.3354/meps125045

    Article  Google Scholar 

  • Byers JE (2002) Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130:146–156

    Google Scholar 

  • Byrnes JE, Reynolds PL, Stachowicz JJ (2007) Invasions and extinctions reshape coastal marine food webs. PLoS ONE 3:e295. doi:10.1371/journal.pone.0000295

    Article  Google Scholar 

  • Caraco NF, Cole JJ, Raymond PA et al (1997) Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78:588–602

    Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of non-indigenous marine organisms. Science 261:78–83. doi:10.1126/science.261.5117.78

    Article  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558. doi:10.1126/science.279.5350.555

    Article  CAS  PubMed  Google Scholar 

  • Commito JA, Rusignuolo BR (2000) Structural complexity in mussel beds: the fractal geometry of surface topography. J Exp Mar Biol Ecol 255:133–152. doi:10.1016/S0022-0981(00)00285-9

    Article  PubMed  Google Scholar 

  • Crooks JA (1996) The population ecology of an exotic mussel, Musculista senhousia, in a southern California bay. Estuaries 19:42–50. doi:10.2307/1352650

    Article  Google Scholar 

  • Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152. doi:10.3354/meps162137

    Article  Google Scholar 

  • Crooks JA (2001) Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol Invasions 3:23–36. doi:10.1023/A:1011404914338

    Article  Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166. doi:10.1034/j.1600-0706.2002.970201.x

    Article  Google Scholar 

  • Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75. doi:10.1016/S0022-0981(99)00041-6

    Article  Google Scholar 

  • Dame RF (1996) Ecology of marine bivalves: an ecosystem approach. CRS Press, New York

    Google Scholar 

  • Didžiulis V (2007) NOBANIS—invasive alien species fact sheet: Teredo navalis. From Online Database of the North European and Baltic Network on Invasive Alien Species—NOBANIS www.nobanis.org

  • Dieterich A, Mörtl M, Eckmann R (2004) The effects of zebra mussels (Dreissena polymorpha) on the foraging success of eurasian perch (Perca fluviatilis) and ruffe (Gymnocephalus cernuus). Int Rev Hydrobiol 89:229–237. doi:10.1002/iroh.200310693

    Article  Google Scholar 

  • Dudas SE, Dower JF (2006) Reproductive ecology and dispersal potential of varnish clam Nuttallia obscurata, a recent invader in the Northeast Pacific Ocean. Mar Ecol Prog Ser 320:195–205. doi:10.3354/meps320195

    Article  Google Scholar 

  • Eckman JE, Nowell ARM (1984) Boundary skin friction and sediment transport about an animal-tube mimic. Sedimentology 31:851–862. doi:10.1111/j.1365-3091.1984.tb00891.x

    Article  Google Scholar 

  • Escapa M, Isacch JP, Daleo P et al (2004) The distribution and ecological effects of the introduced pacific oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia. J Shellfish Res 23:765–772

    Google Scholar 

  • Fernández M, Iribarne OO, Armstrong DA (1993) Habitat selection of young of the year Dungeness crab Cancer magister Dana and predation risk in intertidal habitats. Mar Ecol Prog Ser 92:171–177. doi:10.3354/meps092171

    Article  Google Scholar 

  • Fréchette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36

    Google Scholar 

  • Garci ME, Trigo JE, Pascual S et al (2007) Xenostrobus securis (Lamarck, 1819) (Mollusca: Bivalvia): first report of an introduced species in Galician waters. Aquacult Int 15:19–24. doi:10.1007/s10499-006-9062-1

    Article  Google Scholar 

  • Gosling E (2003) Bivalve molluscs: biology, ecology and culture. Fishing News Books, Oxford

    Book  Google Scholar 

  • Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi:10.1016/S0169-5347(01)02358-8

    Article  Google Scholar 

  • Grosholz E (2005) Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc Natl Acad Sci USA 102:1088–1091. doi:10.1073/pnas.0308547102

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez JL, Iribarne OO (1999) Role of Holocene beds of the stout razor clam Tagelus plebeius in structuring present benthic communities. Mar Ecol Prog Ser 85:213–228. doi:10.3354/meps185213

    Article  Google Scholar 

  • Gutiérrez JL, Iribarne OO (2004) Conditional function of habitat structure: an example from intertidal mudflats. Oecologia 139:572–582. doi:10.1007/s00442-004-1533-3

    Article  PubMed  Google Scholar 

  • Gutiérrez JL, Jones CG, Strayer DL et al (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90. doi:10.1034/j.1600-0706.2003.12322.x

    Article  Google Scholar 

  • Hall RO, Dybdahl MF, Vanderloop MC (2006) Extremely high secondary production of introduced snails in rivers. Ecol Appl 16:1121–1131. doi:10.1890/1051-0761(2006)016[1121:EHSPOI]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Hastings A, Byers JE, Crooks JA et al (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164. doi:10.1111/j.1461-0248.2006.00997.x

    Article  PubMed  Google Scholar 

  • Huettel M, Gust G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–267. doi:10.3354/meps089253

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi:10.2307/3545850

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J Shellfish Res 16:187–203

    Google Scholar 

  • Karatayev AY, Padilla DK, Minchin D et al (2007) Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biol Invasions 9:161–180. doi:10.1007/s10530-006-9013-9

    Article  Google Scholar 

  • Kimmerer WJ (2006) Response of anchovies dampens effects of the invasive bivalve Corbula amurensis on the San Francisco Estuary foodweb. Mar Ecol Prog Ser 324:207–218. doi:10.3354/meps324207

    Article  CAS  Google Scholar 

  • Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236. doi:10.1126/science.1075753

    Article  CAS  PubMed  Google Scholar 

  • Kreeger DA, Newell RIE (2001) Seasonal utilization of different seston carbon sources by the ribbed mussel, Geukensia demissa (Dillwyn) in a mid-Atlantic salt marsh. J Exp Mar Biol Ecol 260:71–91. doi:10.1016/S0022-0981(01)00242-8

    Article  PubMed  Google Scholar 

  • Kushner RB, Hovel KA (2006) Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. J Exp Mar Biol Ecol 332:166–177. doi:10.1016/j.jembe.2005.11.011

    Article  Google Scholar 

  • Laine AO, Mattila J, Lehikoinen A (2006) First record of the brackish water dreissenid bivalve Mytilopsis leucophaeata in the northern Baltic Sea. Aquat Invasions 1:38–41

    Article  Google Scholar 

  • Lenihan HS (1999) Physical–biological coupling on oyster reefs: how habitat form influences individual performance. Ecol Monogr 69:251–275

    Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004

    Article  PubMed  Google Scholar 

  • Lozano SJ, Scharold JV, Nalepa TF (2001) Recent declines in benthic macroinvertebrate densities in Lake Ontario. Can J Fish Aquat Sci 58:518–529. doi:10.1139/cjfas-58-3-518

    Article  Google Scholar 

  • Lydeard C, Cowie RH, Ponder WF et al (2004) The global decline of nonmarine mollusks. Bioscience 54:321–330. doi:10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2

    Article  Google Scholar 

  • MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36:287–299

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes epidemiology, global consequences and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Magoulick DD, Lewis LC (2002) Predation on exotic zebra mussels by native fishes: effects on predator and prey. Freshw Biol 47:1908–1918. doi:10.1046/j.1365-2427.2002.00940.x

    Article  Google Scholar 

  • May GE, Gelembiuk GW, Panov VE et al (2006) Molecular ecology of zebra mussel invasions. Mol Ecol 15:1021–1031. doi:10.1111/j.1365-294X.2006.02814.x

    Article  CAS  PubMed  Google Scholar 

  • McMahon RF (2000) Invasive characteristics of the freshwater bivalve Corbicula fluminea. In: Claudi R, Leach J (eds) Nonindigenous freshwater organisms: vectors, biology and impacts. Lewis Publishers, Boca Raton, pp 315–343

    Google Scholar 

  • McMahon RF (2002) Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Can J Fish Aquat Sci 59:1235–1244. doi:10.1139/f02-105

    Article  Google Scholar 

  • Michaud E, Desrosiers G, Mermillod-Blondin F et al (2005) The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J Exp Mar Biol Ecol 326:77–88. doi:10.1016/j.jembe.2005.05.016

    Article  CAS  Google Scholar 

  • Mistri M (2002) Ecological characteristics of the invasive Asian date mussel, Musculista senhousia, in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25:431–440. doi:10.1007/BF02695985

    Article  Google Scholar 

  • Mistri M (2004) Effect of Musculista senhousia mats on clam mortality and growth: much ado about nothing? Aquaculture 241:207–218. doi:10.1016/j.aquaculture.2004.07.022

    Article  Google Scholar 

  • Morello EB, Solustri C, Froglia C (2004) The alien bivalve Anadara demiri (Arcidae): a new invader of the Adriatic Sea, Italy. J Mar Biol Assoc UK 84:1057–1064. doi:10.1017/S0025315404010410h

    Article  Google Scholar 

  • Morton B (1989) Life-history characteristics and sexual strategy of Mytilopsis sallei (Bivalvia: Dreissenacea), introduced into Hong Kong. J Zool (Lond) 219:469–485

    Article  Google Scholar 

  • Nalepa TF, Hartson DJ, Fanslow DL et al (1998) Declines in benthic macroinvertebrate populations in southern Lake Michigan, 1980–1993. Can J Fish Aquat Sci 55:2402–2413. doi:10.1139/cjfas-55-11-2402

    Article  Google Scholar 

  • Nowell ARM, Jumars PA (1984) Flow environments of aquatic benthos. Annu Rev Ecol Evol Syst 15:303–328

    Google Scholar 

  • Okamura B (1986) Group living and the effect of spatial position in aggregations of Mytilus edulis. Oecologia 69:341–347. doi:10.1007/BF00377054

    Article  Google Scholar 

  • Oliveira MD, Takeda AM, Barros LF et al (2006) Invasion by Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae) of the Pantanal wetland, Brazil. Biol Invasions 8:97–104. doi:10.1007/s10530-005-0331-0

    Article  Google Scholar 

  • Orlova MI, Therriault TW, Antonov PI et al (2005) Invasion ecology of quagga mussels (Dreissena rostriformis bugensis): a review of evolutionary and phylogenetic impacts. Aquat Ecol 39:401–418. doi:10.1007/s10452-005-9010-6

    Article  CAS  Google Scholar 

  • Pace ML, Findlay SEG, Fischer D (1998) Effects of an invasive bivalve on the zooplankton community of the Hudson River. Freshw Biol 39:103–116. doi:10.1046/j.1365-2427.1998.00266.x

    Article  Google Scholar 

  • Palacios R, Armstrong DA, Orensanz J (2000) Fate and legacy of an invasion: extinct and extant populations of the soft-shell clam (Mya arenaria) in Grays Harbor (Washington). Aquat Conserv 10:279–303. doi:10.1002/1099-0755(200007/08)10:4<279::AID-AQC412>3.0.CO;2-I

    Article  Google Scholar 

  • Paolucci EM, Cataldo DH, Fuentes CM et al (2007) Larvae of the invasive species Limnoperna fortunei (Bivalvia) in the diet of fish larvae in the Paraná River, Argentina. Hydrobiologia 589:219–233. doi:10.1007/s10750-007-0734-2

    Article  Google Scholar 

  • Parsons SA, Jefferson B (2006) Potable water treatment processes. Blackwell, Oxford

    Book  Google Scholar 

  • Phelps HL (1994) The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River Estuary near Washington, DC. Estuaries 17:614–621. doi:10.2307/1352409

    Article  Google Scholar 

  • Pilditch CA, Emerson CW, Grant J (1998) Effect of scallop shells and sediment grain size on phytoplankton flux to the bed. Cont Shelf Res 17:1869–1885. doi:10.1016/S0278-4343(97)00050-2

    Article  Google Scholar 

  • Poulton VK, Lovvorn JR, Takekawa JY (2004) Spatial and overwinter changes in clam populations of San Pablo Bay, a semiarid estuary with highly variable freshwater inflow. Estuar Coast Shelf Sci 59:459–473. doi:10.1016/j.ecss.2003.10.005

    Article  Google Scholar 

  • Powers SP, Bishop MA, Grabowski JH et al (2006) Distribution of the invasive bivalve Mya arenaria L. on intertidal flats of southcentral Alaska. J Sea Res 55:207–216. doi:10.1016/j.seares.2005.10.004

    Article  Google Scholar 

  • Prokopovich NP (1969) Deposition of clastic sediments by clams. J Sediment Petrol 39:891–901

    Google Scholar 

  • Rajagopal S, Venugopalan VP, van der Velde G et al (2003) Tolerance of five species of tropical marine mussels to continuous chlorination. Mar Environ Res 55:277–291. doi:10.1016/S0141-1136(02)00272-6

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Venugopalan VP, van der Velde G et al (2006) Greening of the coasts: a review of the Perna viridis success story. Aquat Ecol 40:273–297. doi:10.1007/s10452-006-9032-8

    Article  CAS  Google Scholar 

  • Reeders HH, Bij de Vaate A (1992) Processing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pall.). Hydrobiologia 239:53–63. doi:10.1007/BF00027529

    Article  CAS  Google Scholar 

  • Reeders H, Bij de Vaate A, Noordhuis R (1993) Potential of the zebra mussel (Dreissena polymorpha) for water quality management. In: Nalepa TF, Schloesser DW (eds) Zebra mussels: biology, impacts and control. Lewis Publishers, Boca Raton, pp 439–451

    Google Scholar 

  • Reusch TBH (1998) Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, US. Mar Ecol Prog Ser 170:159–168. doi:10.3354/meps170159

    Article  Google Scholar 

  • Reusch TBH, Williams SL (1998) Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113:428–441. doi:10.1007/s004420050395

    Article  Google Scholar 

  • Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525. doi:10.1139/cjfas-58-12-2513

    Article  Google Scholar 

  • Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends Ecol Evol 15:62–65. doi:10.1016/S0169-5347(99)01745-0

    Article  PubMed  Google Scholar 

  • Ricciardi A, Whoriskey FG, Rasmussen JB (1995) Predicting the intensity and impact of Dreissena infestation on native unionid bivalves from Dreissena field density. Can J Fish Aquat Sci 52:1449–1461. doi:10.1139/f95-140

    Article  Google Scholar 

  • Ricciardi A, Whoriskey FG, Rasmussen JB (1996) Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River. Can J Fish Aquat Sci 53:1434–1444. doi:10.1139/cjfas-53-6-1434

    Article  Google Scholar 

  • Ricciardi A, Whoriskey FG, Rasmussen JB (1997) The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54:2596–2608. doi:10.1139/cjfas-54-11-2596

    Article  Google Scholar 

  • Robinson TB, Branch GM, Griffiths CL et al (2007) Effects of the invasive mussel Mytilus galloprovincialis on rocky intertidal community structure in South Africa. Mar Ecol Prog Ser 340:163–171. doi:10.3354/meps340163

    Article  Google Scholar 

  • Ruesink JL, Lenihan HS, Trimble AC et al (2005) Introduction of non-native oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Syst 36:643–689. doi:10.1146/annurev.ecolsys.36.102003.152638

    Article  Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT et al (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Evol Syst 31:481–531

    Article  Google Scholar 

  • Schloesser DW, Nalepa TF (1994) Dramatic decline of unionid bivalves in offshore waters of western Lake Erie after infestation by the zebra mussel, Dreissena polymorpha. Can J Fish Aquat Sci 51:2234–2242. doi:10.1139/f94-226

    Article  Google Scholar 

  • Schloesser DW, Nalepa TF, Mackie GL (1996) Infestation of unionid bivalves (Unionidae) in North America. Am Zool 36:300–310

    Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/S0169-5347(02)02495-3

    Article  Google Scholar 

  • Silver Botts P, Patterson BA, Schloesser DW (1996) Zebra mussel effects on benthic invertebrates: physical or biotic? J N Am Benthol Soc 15:179–184. doi:10.2307/1467947

    Article  Google Scholar 

  • Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919. doi:10.1111/j.1461-0248.2006.00939.x

    Article  PubMed  Google Scholar 

  • Sousa R, Antunes C, Guilhermino L (2007) Species composition and monthly variation of the Molluscan fauna in the freshwater subtidal area of the River Minho estuary. Estuar Coast Shelf Sci 75:90–100

    Article  Google Scholar 

  • Sousa R, Rufino M, Gaspar M et al (2008a) Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquat Conserv 18:98–110. doi:10.1002/aqc.838

    Article  Google Scholar 

  • Sousa R, Antunes C, Guilhermino L (2008b) Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Ann Limnol Int J Limnol 44:85–94

    Article  Google Scholar 

  • Sousa R, Dias S, Freitas V et al (2008c) Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat Conserv 18:1063–1077. doi:10.1002/aqc.871

    Article  Google Scholar 

  • Stephens EG, Bertness MD (1991) Mussel facilitation of barnacle survival in a sheltered bay habitat. J Exp Mar Biol Ecol 145:33–48. doi:10.1016/0022-0981(91)90004-G

    Article  Google Scholar 

  • Stewart TW, Miner JG, Lowe RL (1998) Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell-generated habitat. J N Am Benthol Soc 17:81–94. doi:10.2307/1468053

    Article  Google Scholar 

  • Stewart TW, Miner JG, Lowe RL (1999a) A field experiment to determine Dreissena and predator effects on zoobenthos in a nearshore, rocky habitat of western Lake Erie. J N Am Benthol Soc 18:488–498. doi:10.2307/1468381

    Article  Google Scholar 

  • Stewart TW, Gafford JC, Miner JG et al (1999b) Dreissena-shell habitat and antipredator behavior: combined effects on survivorship of snails co-occurring with molluscivorous fish. J N Am Benthol Soc 18:274–283. doi:10.2307/1468465

    Article  Google Scholar 

  • Strayer DL (1999) Effects of alien species on freshwater molluscs in North America. J N Am Benthol Soc 18:74–98. doi:10.2307/1468010

    Article  Google Scholar 

  • Strayer DL, Caraco NF, Cole JJ et al (1999) Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience 49:19–27. doi:10.2307/1313490

    Article  Google Scholar 

  • Strayer DL, Downing JA, Haag WR et al (2004a) Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54:429–439. doi:10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2

    Article  Google Scholar 

  • Strayer DL, Hattala KA, Kahnle AW (2004b) Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Can J Fish Aquat Sci 61:924–941. doi:10.1139/f04-043

    Article  Google Scholar 

  • Sylvester F, Boltovskoy D, Cataldo D (2007) The invasive bivalve Limnoperna fortunei enhances benthic invertebrate densities in South American Floodplain Rivers. Hydrobiologia 589:15–27. doi:10.1007/s10750-007-0708-4

    Article  Google Scholar 

  • Thayer SA, Haas RC, Hunter RD et al (1997) Zebra mussel (Dreissena polymorpha) effects on sediment, other zoobenthos, and the diet and growth of adult yellow perch (Perca flavescens) in pond enclosures. Can J Fish Aquat Sci 54:1903–1915. doi:10.1139/cjfas-54-8-1903

    Article  Google Scholar 

  • Thorp JH, Casper AF (2002) Potential effects on zooplankton from species shifts in planktivorous mussels: a field experiment in the St. Lawrence River. Freshw Biol 47:107–119. doi:10.1046/j.1365-2427.2002.00787.x

    Article  Google Scholar 

  • Torchin ME, Hechinger RF, Huspeni TC et al (2005) The introduced ribbed mussel (Geukensia demissa) in Estero de Punta Banda, Mexico: interactions with the native cord grass, Spartina foliosa. Biol Invasions 7:607–614. doi:10.1007/s10530-004-5851-5

    Article  Google Scholar 

  • Vaughn CC, Hakenkamp CC (2001) The functional role of burrowing bivalves in freshwater ecosystems. Freshw Biol 46:1431–1446. doi:10.1046/j.1365-2427.2001.00771.x

    Article  Google Scholar 

  • Verween A, Kerckhof F, Vincx M et al (2006) First European record of the invasive brackish water clam Rangia cuneata (G.B. Sowerby I, 1831) (Mollusca: Bivalvia). Aquat Invasions 1:198–203

    Article  Google Scholar 

  • Wallentinus I, Nyberg CD (2007) Introduced marine organisms as habitat modifiers. Mar Pollut Bull 55:323–332. doi:10.1016/j.marpolbul.2006.11.010

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Rothhaupt K-O (2007) Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. J N Am Benthol Soc 26:673–680. doi:10.1899/07-017R.1

    Article  Google Scholar 

  • Zaklan S, Ydenberg R (1997) The body size burial depth relationship in the infaunal clam Mya arenaria. J Exp Mar Biol Ecol 215:1–17. doi:10.1016/S0022-0981(97)00021-X

    Article  Google Scholar 

Download references

Acknowledgments

Ronaldo Sousa is supported by a postdoctoral grant from the Portuguese Foundation for Science and Technology—FCT (SFRH/BPD/43570/2008). Special thanks to Clive Jones and Pedro Morais for helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Sousa.

Appendix

Appendix

See Table 1

Table 1 Distribution, life habits, ecosystem engineering effects and economic effects of non-indigenous invasive bivalves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, R., Gutiérrez, J.L. & Aldridge, D.C. Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11, 2367–2385 (2009). https://doi.org/10.1007/s10530-009-9422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9422-7

Keywords

Navigation