Skip to main content

Advertisement

Log in

Multiple scale analysis of factors influencing the distribution of an invasive aquatic grass

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

With the expected increase in the spread of invasive species, examination of factors controlling distributions at multiple spatial scales and ecological modelling of their potential distributions are important analyses for informed decision-making. The scale-dependence of mechanisms influencing invasion by non-native species has been shown previously, indicating that studies of key factors affecting invasive species distributions at multiple spatial scales are critical for successful management. Freshwater systems are particularly vulnerable to invasive species, yet few studies have examined the environmental factors influencing distributions of invasive species at multiple spatial scales. We examined the effect of environmental variables on the predicted distribution of the invasive aquatic grass Glyceria maxima over continental, regional and local scales in Australia. We undertook an initial critical evaluation of which predictor variables were most appropriate to use at each scale, largely considering prior knowledge. On a continental scale, climatic, topographic and hydrological variables predicted well the potential distribution of G. maxima, identifying temperate regions as most susceptible to invasion. The regional analysis found that dense, woody, riparian vegetation has a strong negative impact on the occurrence of G. maxima, especially at intermediate elevations. The invasive grass was found less often on biotite granite and on fluvial geology. At a local scale, occurrence of G. maxima was related positively to soil phosphorus and nitrogen, and negatively related to soil organic carbon. The identification of key factors affecting invasive species distributions at multiple spatial scales will inform prevention schemes, assist targeted field sampling for the development of monitoring programs, and allow prioritization of control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol Modell 162(3):211–232. doi:10.1016/S0304-3800(02)00349-6

    Article  Google Scholar 

  • Austin MP, Cunningham RB (1981) Observational analysis of environmental gradients. P Ecol Soc Aus 11:109–119

    Google Scholar 

  • Buckland ST, Elston DA (1993) Empirical models for the spatial distribution of wildlife. J Appl Ecol 30:478–495. doi:10.2307/2404188

    Article  Google Scholar 

  • Bunn SE, Davies PM, Kellaway DM et al (1998) Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshw Biol 39:171–178. doi:10.1046/j.1365-2427.1998.00264.x

    Article  Google Scholar 

  • Bunn SE, Davies PM, Mosisch TD (1999) Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw Biol 41:333–345. doi:10.1046/j.1365-2427.1999.00434.x

    Article  Google Scholar 

  • Burford JR, Bremner JM (1975) Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol Biochem 7(6):389–394. doi:10.1016/0038-0717(75)90055-3

    Article  CAS  Google Scholar 

  • Cain SA (1944) Foundations of plant geography. Harpers and Brothers, New York

    Google Scholar 

  • Centor RM (1991) The use of ROC curves and their analyses. Med Decis Making 11(2):102–106. doi:10.1177/0272989X9101100205

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Lake PS, O’Dowd DJ (2004) Ecological impacts on aquatic macroinvertebrates following upland stream invasion by a ponded pasture grass (G. maxima) in southern Australia. Mar Freshw Res 55:709–713. doi:10.1071/MF04043

    Article  Google Scholar 

  • Collingham YC, Wadsworth RA, Huntley B et al (2000) Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. J Appl Ecol 37(Suppl. 1):13–27. doi:10.1046/j.1365-2664.2000.00556.x

    Article  Google Scholar 

  • Drake JM, Bossenbroek JM (2004) The potential distribution of zebra mussels in the United States. Bioscience 54(10):931–941. doi:10.1641/0006-3568(2004)054[0931:TPDOZM]2.0.CO;2

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  • Fleishman E, Thomson JR, Mac Nally R et al (2005) Using indicator species to predict species richness of multiple taxonomic groups. Conserv Biol 19(4):1125–1137. doi:10.1111/j.1523-1739.2005.00168.x

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499. doi:10.1177/030913339501900403

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  • Haslam SE (1978) River plants: the macrophytic vegetation of watercourses. Cambridge University Press, Cambridge

    Google Scholar 

  • Havel JE, Medley KA (2006) Biological invasions across spatial scales: intercontinental, regional and local dispersal of cladoceran zooplankton. Biol Invasions 8:459–473. doi:10.1007/s10530-005-6410-4

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Springs Harbor Symposium on Quantitative Biology 22:415–427

    Google Scholar 

  • Iguchi K, Matsuura K, McNyset KM et al (2004) Predicting invasions of north American basses in Japan using native range data and a genetic algorithm. Trans Am Fish Soc 133(4):845–854. doi:10.1577/T03-172.1

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) Vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Johnson LB, Richards C, Host GE et al (1997) Landscape influences on water chemistry in Midwestern stream ecosystems. Freshw Biol 37:113–132. doi:10.1046/j.1365-2427.1997.00156.x

    Article  Google Scholar 

  • Julian MH, Skarratt B, Maywald GF (1995) Potential geographical distribution of alligator weed and its control by Agasicles hygrophila. J Aquat Plant Manag 33:55–60

    Google Scholar 

  • Kluza DA, McNyset KM (2005) Ecological niche modelling of aquatic invasive species. Aquat Invaders 16(1):1–7

    Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, Seattle

    Google Scholar 

  • Ladson AR, White LJ, Doolan JA (1999) Development and testing of an index of stream condition for waterway management in Australia. Freshw Biol 41:453–468. doi:10.1046/j.1365-2427.1999.00442.x

    Article  Google Scholar 

  • Lambert JM (1947) Biological flora of the British Isles: Glyceria maxima (Hartm.) Holmb. J Ecol 34(2):310–344. doi:10.2307/2256721

    Article  Google Scholar 

  • Levin SA (1992) The problem of patterns and scale in ecology. Ecology 73:1943–1967. doi:10.2307/1941447

    Article  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854. doi:10.1126/science.288.5467.852

    Article  PubMed  CAS  Google Scholar 

  • Lodge DM, Stein RA, Brown KM et al (1998) Predicting impact of freshwater exotic species on native biodiversity: challenges in spatial scaling. Aust J Ecol 23:53–67. doi:10.1111/j.1442-9993.1998.tb00705.x

    Article  Google Scholar 

  • Long JS (1997) Regression models for categorical and limit dependent variables. Sage Publications, London

    Google Scholar 

  • Loo SE, Mac Nally R, Lake PS (2007) Forecasting New Zealand mudsnail invasion range: model comparisons using native and invaded ranges. Ecol Appl 17(1):181–189. doi:10.1890/1051-0761(2007)017[0181:FNZMIR]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Loo SE, Mac Nally R, O’Dowd DJ et al (in press) Secondary invasions: implications of riparian restoration for in-stream invasion by an aquatic grass. Restor Ecol doi:10.1111/j.1526-100X.2008.00378.x

  • Mack RN (2000) Assessing the extent, status and dynamism of plant invasions: current and emerging approaches. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington DC

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences and control. Issues Ecol 5:1–22

    Google Scholar 

  • Marshall TJ, Rose CW, Holmes JW (1996) Soil physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Mason SJ, Graham NE (2002) Areas beneath the relative operating characteristic (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Q J R Meteorol Soc 128:2145–2166. doi:10.1256/003590002320603584

    Article  Google Scholar 

  • McCarty GW, Bremner JM (1992) Availability of soil organic carbon for denitrification of nitrate in subsoils. Biol Fertil Soils 14(3):219–222. doi:10.1007/BF00346064

    Article  CAS  Google Scholar 

  • Milne BT (1991) Heterogeneity as a multiscale characteristic of landscapes. In: Kolasa J, Pickett STA (eds) Ecological heterogeneity. Springer-Verlag, New York

    Google Scholar 

  • Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:146–161. doi:10.1016/0006-3207(96)00024-9

    Article  Google Scholar 

  • Olckers T (2004) Targeting emergent weeds for biological control in South Africa: the benefits of halting the spread of alien plants at an early stage of their invasion. S Afr J Sci 100:64–68

    Google Scholar 

  • Ozimek T, Klekot L (1979) Glyceria maxima (Hartm.) Holmb. in ponds supplied with postwater sewage water. Aquat Bot 7:231–239. doi:10.1016/0304-3770(79)90024-X

    Article  Google Scholar 

  • Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413. doi:10.1007/s10530-005-6419-8

    Article  Google Scholar 

  • Pauchard A, Alaback P, Edlund E (2003) Plant invasions in protected areas at multiple scales: Linaria vulgaris (Scrophulariaceae) in the West Yellowstone area. West N Am Nat 63:416–428

    Google Scholar 

  • Parsons WT, Cuthbertson EG (1992) Noxious weeds of Australia. Inkata Press, Melbourne or Sydney

    Google Scholar 

  • Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol Modell 117:159–164. doi:10.1016/S0304-3800(99)00023-X

    Article  Google Scholar 

  • Peterson AT, Robins CR (2003) Using ecological-niche modelling to predict Barred Owl invasions with implications for Spotted Owl conservation. Conserv Biol 17(4):1161–1165. doi:10.1046/j.1523-1739.2003.02206.x

    Article  Google Scholar 

  • Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51(6):863–868. doi:10.1614/P2002-081

    Article  CAS  Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Google Scholar 

  • Pysek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050. doi:10.1111/j.1365-2699.2006.01578.x

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  • Richardson D, Holmes P, Esler K (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Salisbury EJ (1926) The geographical distribution of plants in relation to climatic factors. Geogr J 57:312–335. doi:10.2307/1782828

    Article  Google Scholar 

  • Scott JM, Heglund PJ, Morrison ML et al (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington DC

    Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distribution areas. Biodiv Inf 2:1–10

    Article  Google Scholar 

  • Stewart JBW, Tiessen H (1987) Dynamics of soil organic phosphorus. Biogeochemistry 4:41–60. doi:10.1007/BF02187361

    Article  CAS  Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Math Comput Simul 33:385–390. doi:10.1016/0378-4754(92)90126-2

    Article  Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling systems: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13(2):143–158. doi:10.1080/136588199241391

    Article  Google Scholar 

  • Stohlgren TJ, Chong GW, Schell LD et al (2002) Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales. Environ Manage 29(4):566–577. doi:10.1007/s00267-001-0006-2

    Article  PubMed  Google Scholar 

  • Sundblad K, Wittgren HB (1989) Glyceria maxima for wastewater nutrient removal and forage production. Biol Waste 27(1):29–42. doi:10.1016/0269-7483(89)90028-1

    Article  CAS  Google Scholar 

  • Tanner CC (1996) Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng 7:59–83. doi:10.1016/0925-8574(95)00066-6

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Pysek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250. doi:10.1111/j.1365-2486.2005.001018.x

    Article  Google Scholar 

  • Trakhtenbrot A, Nathan R, Perry G et al (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181. doi:10.1111/j.1366-9516.2005.00156.x

    Article  Google Scholar 

  • Turner MG, O’Neill RV, Gardner RH et al (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecol 3(3/4):153–162. doi:10.1007/BF00131534

    Article  Google Scholar 

  • Weiss JER, Iaconis LJ (2000) G. maxima Reed Sweet grass; an assessment of weed potential for Melbourne Water. Keith Turnbull Research Institute, Melbourne

    Google Scholar 

  • Wiley EO, McNyset KM, Peterson AT et al (2003) Niche modelling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography (Wash DC) 16:120–127

    Google Scholar 

Download references

Acknowledgments

We would like to thank W. Brown, G. Rooney, L. Carpenter, and S. Schreiber for their ongoing support and advice on this project. The authors acknowledge the Australian Herbarium and Melbourne Water Authority for the Glyceria maxima data they provided. This study was partially funded by the Cooperative Research Centre for Freshwater Ecology. This is publication number 112 from the Australian Centre for Biodiversity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarina E. Loo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loo, S.E., Mac Nally, R., O’Dowd, D.J. et al. Multiple scale analysis of factors influencing the distribution of an invasive aquatic grass. Biol Invasions 11, 1903–1912 (2009). https://doi.org/10.1007/s10530-008-9368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9368-1

Keywords

Navigation