Biological Invasions

, Volume 11, Issue 6, pp 1247–1258 | Cite as

Initial conditions and their effect on invasion velocity across heterogeneous landscapes

Original Paper

Abstract

Accurate, time dependent control options are required to halt biological invasions prior to equilibrium establishment, beyond which control efforts are often impractical. Although invasions have been successfully modeled using diffusion theory, diffusion models are typically confined to providing simple range expansion estimates. In this work, we use a Susceptible/Infected cellular automaton (CA) to simulate diffusion. The CA model is coupled with a network model to track the speed and direction of simulated invasions across heterogeneous landscapes, allowing for identification of locations for targeted control in both time and space. We evaluated the role of the location of initial establishment insofar as it affected the pattern and rate of spread and how these are influenced by patch attributes such as size. Our results show that the location of initial establishment can significantly affect the temporal dynamics of an invasion. Traditional network metrics such as degree and measures of topological distance were insufficient for predicting the direction and speed of the invasion. Our coupled models allow the dynamic tracking of invasions across fragmented landscapes for both theoretical and practical applications.

Keywords

Biological invasions Network theory Graph theory Epidemiology Diffusion Cellular automaton Landscape ecology 

References

  1. Acosta A, Blasi C, Carranza ML, Ricotta C, Stanisci A (2003) Quantifying ecological mosaic connectivity and hemeroby with a new topoecological index. Phytocoenologia 33:623–631. doi:10.1127/0340-269X/2003/0033-0623 CrossRefGoogle Scholar
  2. Ball F, Mollison D, Scalia-Tombia G (1997) Epidemics with two levels of mixing. Ann Appl Probab 7:46–89. doi:10.1214/aoap/1034625252 CrossRefGoogle Scholar
  3. Barabasi AL (2002) Linked: the new science of networks. Perseus Publishing, Cambridge MA, USAGoogle Scholar
  4. Bodin O, Norberg J (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landsc Ecol 22:31–44. doi:10.1007/s10980-006-9015-0 CrossRefGoogle Scholar
  5. Brooks CP (2006) Quantifying population substructure: extending the graph-theoretic approach. Ecology 87:864–872. doi:10.1890/05-0860 PubMedCrossRefGoogle Scholar
  6. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278. doi:10.1006/jema.2000.0373 CrossRefGoogle Scholar
  7. Burdon JJ, Thrall PH, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39. doi:10.1146/annurev.phyto.43.040204.140238 PubMedCrossRefGoogle Scholar
  8. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536CrossRefGoogle Scholar
  9. Cantwell MD, Forman RTT (1993) Landscape graphs: ecological modeling with graph theory to detect configurations common to diverse landscapes. Landsc Ecol 8:239–251. doi:10.1007/BF00125131 CrossRefGoogle Scholar
  10. Condeso TE, Meentemeyer RK (2007) Effects of landscape heterogeneity on the emerging forest disease sudden oak death. J Ecol 95:354–375. doi:10.1111/j.1365-2745.2006.01206.x CrossRefGoogle Scholar
  11. Cruickshank I, Gurney W, Veitch R (1999) The characteristics of epidemics and invasions with thresholds. Theor Popul Biol 56:279–292. doi:10.1006/tpbi.1999.1432 PubMedCrossRefGoogle Scholar
  12. D’Eon RS, Glenn M, Parfitt I, Fortin MJ (2002) Landscape connectivity as a function of scale and organism vagility in a real forested landscape. Conserv Ecol 6:10 (online) http://www.consecol.org/vol6/iss2/art10/. Accessed 3 Aug 2007Google Scholar
  13. Eubank S, Guclu H, Anil Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z et al (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429:180–184. doi:10.1038/nature02541 PubMedCrossRefGoogle Scholar
  14. Ferrari JR, Lookingbill TR, Neel MC (2007) Two measures of landscape-graph connectivity: an assessment across gradients in area and configuration. Landsc Ecol 22:1315–1323. doi:10.1007/s10980-007-9121-7 CrossRefGoogle Scholar
  15. Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56. doi:10.1086/324120 PubMedCrossRefGoogle Scholar
  16. Gardner RH, Lookingbill TR, Townsend PA, Ferrari JR (2008) A new approach for rescaling land cover data. Landsc Ecol 23:513–526. doi:10.1007/s10980-008-9213-z CrossRefGoogle Scholar
  17. Gross JL, Yellen J (2006) Graph theory and its applications. In: Rosen KH (ed) Discrete mathematics and its applications, 2nd edn. Chapman & Hall, New YorkGoogle Scholar
  18. Hansen EM (1999) Disease and diversity in forest ecosystems. Australas Plant Pathol 28:313–319. doi:10.1071/AP99050 CrossRefGoogle Scholar
  19. Hargrove WW, Gardner RH, Turner MG, Romme WH, Despain DG (2000) Simulating fire patterns in heterogeneous landscapes. Ecol Model 135:243–263. doi:10.1016/S0304-3800(00)00368-9 CrossRefGoogle Scholar
  20. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A et al (2005) The spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101. doi:10.1111/j.1461-0248.2004.00687.x CrossRefGoogle Scholar
  21. Holdenreider O, Pautasso M, Weisberg PJ, Lonsdale D (2004) Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol Evol 19(8):446–452. doi:10.1016/j.tree.2004.06.003 CrossRefGoogle Scholar
  22. Homer C, Huang CQ, Yang LM, Wylie B, Coan M (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70:829–840Google Scholar
  23. Huang CY, Sun CT, Lin HC (2005) Influence of local information on simulations in small-world network models. J Artif Soc Soc Simul 8(4). http://jasss.soc.surrey.ac.uk/8/4/8.html. Accessed 20 Dec 2007
  24. Humble LM, Allen EA (2006) Forest biosecurity: alien invasive species and vectored organisms. Can J Plant Pathol 28:256–269Google Scholar
  25. Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW (2007) Modelling disease spread and control in networks: implications for plant sciences. New Phytol 174:279–297. doi:10.1111/j.1469-8137.2007.02028.x PubMedCrossRefGoogle Scholar
  26. Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:4 (online) URL:http://www.consecol.org/Journal/vol1/iss1/art4. Accessed 15 May 2007
  27. Lee SD, Park S, Park YS, Chung YJ, Lee BY, Chon TS (2007) Range expansion of forest pest populations by using the lattice model. Ecol Model 203:157–166. doi:10.1016/j.ecolmodel.2006.04.031 CrossRefGoogle Scholar
  28. Liebhold A, Tobin P (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253–262. doi:10.1007/s10144-006-0014-4 CrossRefGoogle Scholar
  29. Mack RN (1985) Invading plants: their potential contribution to population biology. In: White J (ed) Studies on plant demography. John L Harper festschrift, Academic Press, London UK, pp 127–142Google Scholar
  30. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  31. Meentemeyer RK, Anacker BL, Mark W, Rizzo DM (2008) Early detection of emerging forest disease using dispersal estimation and ecological niche modeling. Ecol Appl 18:377–390. doi:10.1890/07-1150.1 PubMedCrossRefGoogle Scholar
  32. Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307. doi:10.1111/j.1523-1739.2007.00871.x PubMedCrossRefGoogle Scholar
  33. Neel MC (2008) Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus Albans (Fabaceae). Biol Conserv 141:938–955. doi:10.1016/j.biocon.2007.12.031 CrossRefGoogle Scholar
  34. Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, New YorkGoogle Scholar
  35. O’Sullivan D (2001) Graph-cellular automata: a generalised discrete urban and regional model. Environ Plan B 28:687–705. doi:10.1068/b2707 CrossRefGoogle Scholar
  36. Park AW, Gubbins S, Gilligan CA (2002) Extinction times for closed epidemics: the effects of host spatial structure. Ecol Lett 5:747–755. doi:10.1046/j.1461-0248.2002.00378.x CrossRefGoogle Scholar
  37. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967. doi:10.1007/s10980-006-0013-z CrossRefGoogle Scholar
  38. Ricotta C, Stanisci A, Avena GC, Blasi C (2000) Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecol 1:89–94. doi:10.1556/ComEc.1.2000.1.12 CrossRefGoogle Scholar
  39. Riitters KH, Wickham JD, O’Neill RV, Jones KB, Smith ER, Coulston JW et al (2002) Fragmentation of continental United States forests. Ecosystems 5:815–822. doi:10.1007/s10021-002-0209-2 CrossRefGoogle Scholar
  40. Rothley KD, Rae C (2005) Working backwards to move forwards: graph-based connectivity metrics for reserve network selection. Environ Model Assess 10:107–113. doi:10.1007/s10666-005-4697-2 CrossRefGoogle Scholar
  41. Rudd H, Vala J, Schaefer V (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor Ecol 10:368–375. doi:10.1046/j.1526-100X.2002.02041.x CrossRefGoogle Scholar
  42. Seno H, Koshiba S (2005) A mathematical model for invasion range of population dispersion through a patchy environment. Biol Invasions 7:757–770. doi:10.1007/s10530-005-5211-0 CrossRefGoogle Scholar
  43. Shigesada N, Kawasaki K (1997) Biological Invasions: theory and practice. In: May RM, Harvey PH (eds) Oxford series in ecology and evolution. Oxford University Press Inc., New YorkGoogle Scholar
  44. Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251. doi:10.1086/285796 CrossRefGoogle Scholar
  45. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218PubMedGoogle Scholar
  46. Toraczkai Z, Guclu H (2007) Proximity networks and epidemics. Physica A 378:68–75. doi:10.1016/j.physa.2006.11.088 CrossRefGoogle Scholar
  47. Turner J, Begon M, Bowers RG (2002) Modelling pathogen transmission: the interrelationship between local and global approaches. Proc R Soc Lond B Biol Sci 270:105–112. doi:10.1098/rspb.2002.2213 CrossRefGoogle Scholar
  48. Urban DL (2003) LANDGRAPHS: a package for graph theoretic analyses of landscapes. Landscape Ecology Laboratory, Duke University, DurhamGoogle Scholar
  49. Urban DL, Keitt T (2001) Landscape connectivity: a graph theoretic perspective. Ecology 82:1205–1218CrossRefGoogle Scholar
  50. Urban MC, Phillips BL, Skelly DK, Shine R (2008) A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia. Am Nat 171:E134–E148. doi:10.1086/527494 PubMedCrossRefGoogle Scholar
  51. Vasquez A (2006) Spreading dynamics on heterogeneous populations: multitype network approach. Phys Rev E 74(066114):1–11Google Scholar
  52. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. doi:10.1038/30918 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgUSA

Personalised recommendations