Skip to main content

Advertisement

Log in

How do alien plants distribute along roads on oceanic islands? A case study in Tenerife, Canary Islands

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Islands are paradigms of the pervasive spread of alien plants, but little work has been done assessing pattern and cause of the distribution of such plants in relation to roads on oceanic islands. We studied richness, composition, and distribution of alien plants and compared them with native species along roads on Tenerife (Canary Islands). We studied a single road transect that sampled two contrasting wind-facing aspects (leeward versus windward) and ran from coastal Euphorbia scrubland through thermophilous scrubland to Makaronesian laurel forest at the top of a mountainous massif. We evaluated the effects of elevation, aspect, distance to urban nuclei, and several road-edge features (including road-edge width and management—implying disturbance intensity), using regression models, analysis of variance, and multivariate ordination methods. Richness of both endemics and native nonendemics was explained by elevation (related to well-defined vegetation belts), steepness of the edge slope, and cover of rocky ground. Despite a short elevational gradient (0–650 m), we found clear altitudinal zonation by biogeographic origin of both nonendemic natives and aliens, and altitudinal distribution of aliens followed the same zonation as that of natives. Alien species’ richness was related to management intensity determining edge disturbance, road-edge width, and distance to the nearest urban nuclei (propagule sources). Different variables explained distribution patterns of natives, endemics, and aliens along roadsides on leeward and windward aspects. Altitude and aspect also had a strong influence on the frequency of life strategies (woody species, annuals and biennial/perennial herbs) of roadside plant communities. Due to harsher environmental filters operating on the leeward aspect, alien species were distributed along the altitudinal gradient in apparent consistency with general biogeographical affinities. Tropical/subtropical taxa showed exponential decrease with increasing elevation, Mediterranean taxa showed a unimodal response (i.e., maximum richness at mid elevation, minimum at the extremes of the gradient), and temperate taxa showed linear increase with elevation. Native but nonendemic species followed analogous trends to those of aliens. This suggests climatic matching as a prerequisite for successful invasion of this topographically complex island. Other road traits, such as edge width, slope steepness, soil cover, and road-edge disturbance intensity may play a complementary role, at a more local scale, to shape the distribution of alien plants on these island roads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acebes JR, Arco-del M, García A, León MC, Pérez-de-Paz PL, Rodríguez O et al (2004) Pteridophyta, Spermatophyta. In: Izquierdo I, Martín JL, Zurita N, Arechavaleta M (eds) Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias, pp 96–143

    Google Scholar 

  • Alpert P, Bone E, Hozapfel C (2000) Invasiveness, invasibility, and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi:10.1078/1433-8319-00004

    Article  Google Scholar 

  • Anon (1990) SPSS/PC+V.6.0. Base manual. SPSS Inc., Chicago, IL

    Google Scholar 

  • Arco-del M, Pérez-de-Paz PL, Acebes JR, González-Mancebo JM, Reyes-Betancort JA, Bermejo JA et al (2006) Bioclimatology and climatophilous vegetation of Tenerife (Canary Islands). Ann Bot Fenn 43:167–192

    Google Scholar 

  • Arévalo JR, Delgado JD, Otto R, Naranjo A, Salas M, Fernández-Palacios JM (2005) Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol Evol Syst 7:185–202. doi:10.1016/j.ppees.2005.09.003

    Article  Google Scholar 

  • Badano EI, Cavieres LA, Molina-Montenegro MA, Quiroz CL (2005) Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. J Arid Environ 62:93–108. doi:10.1016/j.jaridenv.2004.10.012

    Article  Google Scholar 

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183

    Google Scholar 

  • Cadenasso ML, Pickett STA (2001) Effect of edge structure on the flux of species into forest interiors. Conserv Biol 15:91–97. doi:10.1046/j.1523-1739.2001.99309.x

    Article  Google Scholar 

  • Daehler CC (2005) Upper-montane plant invasions in the Hawaiian Islands: patterns and opportunities. Perspect Plant Ecol Evol Syst 7:203–216. doi:10.1016/j.ppees.2005.08.002

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Google Scholar 

  • Dark J (2004) The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis. Divers Distrib 10:1–9. doi:10.1111/j.1472-4642.2004.00054.x

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • Delgado JD, Arroyo N, Arévalo JR, Fernández-Palacios JM (2007) Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc Urban Plan 81:328–340. doi:10.1016/j.landurbplan.2007.01.005

    Article  Google Scholar 

  • Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367. doi:10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. doi:10.1016/S0169-5347(98)01554-7

    Article  PubMed  Google Scholar 

  • Fernández-Palacios JM, Martín Esquivel JL (2001) Naturaleza de las Islas Canarias Ecología y Conservación. Turquesa Ediciones, Santa Cruz de Tenerife

    Google Scholar 

  • Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231. doi:10.1146/annurev.ecolsys.29.1.207

    Article  Google Scholar 

  • Forman RTT, Sperling D, Bissonette JA, Clevenger P, Cutshall CD, Dale VH et al (2002) Road ecology: science and solutions. Island Press, Washington, DC

    Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv Biol 17:420–432. doi:10.1046/j.1523-1739.2003.01408.x

    Article  Google Scholar 

  • Godfree RC, Lepschi BJ, Mallinson DJ (2004) Ecological filtering of exotic plants in Australian sub-alpine environment. J Veg Sci 15:227–236. doi:10.1658/1100-9233(2004)015[0227:EFOEPI]2.0.CO;2

    Article  Google Scholar 

  • Greenberg CH, Crownover SH, Gordon DR (1997) Roadside soil: a corridor for invasion of xeric scrub by nonindigenous plants. Nat Areas J 17:99–109

    Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi:10.1111/j.0022-0477.2004.00953.x

    Article  Google Scholar 

  • Hohenester A, Welss W (1993) Exkursionsflora für die Kanarischen Inseln mit Ausblicken auf ganz Makaronesien. Ulmer, Stuttgart

    Google Scholar 

  • Hulme PE (2004) Islands, invasions and impacts: a Mediterranean perspective. In Fernández-Palacios JM, Morici C (eds). Ecología insular/Island ecology, Asociación Española de Ecología Terrestre (AEET)—Cabildo Insular de La Palma, pp 359–383

  • Jiménez A, Pauchard A, Cavieres LA, Marticorena AE, Bustamante RO (2008) Do climatically similar regions contain similar alien floras? A comparison between the Mediterranean areas of central Chile and California. J Biogeogr 4:614–624. doi:10.1111/j.1365-2699.2007.01799.x

    Article  Google Scholar 

  • Kämmer F (1974) Klima und Vegetation auf Tenerife, besonders im Hinblick auf den Nebelniederschlag. Scr Geobotanica 7:1–78

    Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Ecology 104:5925–5930

    CAS  Google Scholar 

  • Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impact of exotic plant invasions. Philos Trans R Soc Lond Ser B 270:775–781

    Google Scholar 

  • Lonsdale WM (1999) Concepts and synthesis: global patterns of plant invasions, and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198. doi:10.1016/S0169-5347(97)01286-X

    Article  Google Scholar 

  • Parendes LA, Jones JA (2000) Role of light availability and dispersal in alien plant invasion along roads and streams in the H.J. Andrews Experimental Forest, Oregon. Conserv Biol 14:64–75. doi:10.1046/j.1523-1739.2000.99089.x

    Article  Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18:238–248. doi:10.1111/j.1523-1739.2004.00300.x

    Article  Google Scholar 

  • Pauchard A, Alaback PB (2006) Edge type defines alien plant species invasions along Pinus contorta burned, highway and clearcut forest edges. For Ecol Manage 223:327–335. doi:10.1016/j.foreco.2005.11.020

    Article  Google Scholar 

  • Pauchard A, Alaback PB, Edlund E (2003) Plants invasions in protected areas at multiple scales: Linaria vulgaris (scrophulariaceae) in the west Yellowstone area. West N Am Nat 63:416–428

    Google Scholar 

  • Quintana-Ascencio PF, Weekley CW, Menges ES (2007) Comparative demography of a rare species in Florida scrub and road habitats. Biol Conserv 137:263–270

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation ecology. Blackwell Science, Oxford, pp 332–355

    Google Scholar 

  • Ridley HN (1930) The dispersal of plants throughout the world. Reeve, Ashford, Kent

    Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724. doi:10.1086/379204

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi:10.1146/annurev.ecolsys.32.081501.114037

    Article  Google Scholar 

  • Schönfelder P, Schönfelder I (1997) Die Kosmos-Kanarenflora. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Schönfelder P, Schönfelder I (2002) Kosmos-Atlas Mittelmeer-und Kanarenflora. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Simberloff D (1995) Why do introduced species appear to devastate islands more than mainland areas? Pac Sci 49:87–97

    Google Scholar 

  • Spelleberg IF (1998) Ecological effects of roads and traffic: a literature review. Glob Ecol Biogeogr 7:317–333. doi:10.1046/j.1466-822x.1998.00308.x

    Article  Google Scholar 

  • Stierstorfer C (2005) The vascular plant vegetation in the forest belt of El Hierro (Canary Islands). Diss Bot 393:1–375

    Google Scholar 

  • Stierstorfer C, von Gaisberg M (2005) Annotated checklist and distribution of vascular plants of El Hierro (Canary Islands). Englera 27:1–221

    Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows, Software for canonical community ordination (version 4). Microcomputer Power, Ithaca

    Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30. doi:10.1046/j.1523-1739.2000.99084.x

    Article  Google Scholar 

  • Ullmann I, Heindl B (1989) Geographical and ecological differentiation of roadside vegetation in temperate Europe. Bot Acta 102:261–269

    Google Scholar 

  • Ullmann I, Bannister P, Wilson JB (1995) The vegetation of roadside verges with respect to environmental gradients in southern New Zealand. J Veg Sci 6:131–142. doi:10.2307/3236264

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • von Gaisberg M (2005) Die Vegetation der Fußstufe von El Hierro (Kanarische Inseln). Diss Bot 395:1–364

    Google Scholar 

  • Wace N (1977) Assessment of dispersal of plant species: the car-borne flora in Canberra. Proc Ecol Soc Aust 10:167–186

    Google Scholar 

  • Wester L, Juvik JO (1983) Roadside plant communities on Mauna Loa, Hawaii. J Biogeogr 10:307–316. doi:10.2307/2844740

    Article  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Whittaker RJ, Heegaard E (2003) What is the observed relationship between species richness and productivity? Ecology 84:3384–3390. doi:10.1890/02-3128 comment

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Wilson JB, Hubbard JCE, Rapson GL (1988) A comparison of the realized niche relations of species in New Zealand and Britain. Oecologia 76:106–110

    Google Scholar 

  • Wilson JB, Rapson GL, Sykes MT, Watkins AJ, Williams PA (1992) Distributions and climatic correlations of some exotic species along roadsides in South Island, New Zealand. J Biogeogr 19:183–194. doi:10.2307/2845504

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203. doi:10.1046/j.1523-1739.2002.01064.x

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank Silvia Fernández, Celia García, and Lea de Nascimento for their help with field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Arteaga.

Appendix

Appendix

Most frequent introduced plant species

Species

Life form

Origin

Status

Invasive species

Total frequency

Frequency leeward

Frequency windward

Polycarpon tetraphyllum

Th

Tropical/subtropical

P

 

24

12

12

Rubus ulmifolius

Ph

Mediterranean

P

Yes

23

12

11

Sonchus oleraceus

Th

Mediterranean

P

 

21

13

8

Foeniculum vulgare

H

Mediterranean

C

Yes

17

6

11

Medicago polymorpha

Th

Mediterranean

P

 

16

10

6

Bidens pilosa

Th

Tropical/subtropical

C

 

14

7

7

Opuntia maxima

Ph

Tropical/subtropical

C

Yes

13

11

2

Conyza bonariensis

Th

Tropical/subtropical

C

 

13

3

10

Leontodon taraxacoides

Th

Mediterranean

C

 

13

11

2

Urospermum picroides

Th

Mediterranean

P

 

13

8

5

Erodium malacoides

Th

Mediterranean

C

 

12

7

5

Echium plantagineum

Th

Mediterranean

P

 

12

10

2

Ageratina adenophora

H

Tropical/subtropical

C

Yes

11

6

5

Scorpiurus muricatus

Th

Mediterranean

C

 

9

7

2

Cerastium glomeratum

Th

Mediterranean

P

 

9

8

1

Picris echioides

Th

Mediterranean

P

 

9

6

3

Silene gallica

Th

Mediterranean

P

 

9

5

4

Oxalis pes-caprae

G

Tropical/subtropical

C

Yes

8

2

6

Agave americana

Ph

Tropical/subtropical

C

Yes

8

2

6

Fumaria bastardii

Th

Mediterranean

P

 

8

4

4

Galactites tomentosa

Th

Mediterranean

P

 

8

3

5

Stipa neesiana

H

Tropical/subtropical

P

 

7

7

0

Cotula australis

Th

Tropical/subtropical

C

 

7

5

2

Bromus madritensis

Th

Mediterranean

P

 

7

6

1

Galium aparine

Th

Temperate

P

 

7

3

4

Sonchus asper

Th

Mediterranean

P

 

7

5

2

  1. Life form: Th therophyte, H hemicryptophyte, G geophyte, Ph phanerophyte. Status: C certainly introduced, P probably introduced. Frequency: number of plots where species present (total number of plots 50)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arteaga, M.A., Delgado, J.D., Otto, R. et al. How do alien plants distribute along roads on oceanic islands? A case study in Tenerife, Canary Islands. Biol Invasions 11, 1071–1086 (2009). https://doi.org/10.1007/s10530-008-9329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9329-8

Keywords

Navigation