Skip to main content
Log in

Differential invasion success among biotypes: case of Bemisia tabaci

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Studies on success or failures of biological invasions by different insect biotypes are scarce and could provide interesting insights into the traits that determine greater or lower ability to invade. Life history traits of invasive whiteflies Bemisia tabaci of the B biotype (known as a worldwide invasive biotype) and of the indigenous biotype Ms (not known as an invader anywhere in the world), both from the island of La Réunion (Indian Ocean), were compared for this purpose. In our study we demonstrated that within a cultivated host plant (tomato), the B biotype differs from the Ms by a combination of several life-history traits. This combination gives the invasive biotype an advantage over the resident both in terms of rapid demographic growth (increased intrinsic rate of increase and associated traits such as short developmental times and high fecundity) and in terms of competition (large adult and offspring sizes), without any recorded trade off. However, in the field the resident biotype remains dominant on non-cultivated hosts (weeds) and in a particular climate (high humidity). This suggests that invasive biotypes are characterized by physiological, morphological and biological adaptations to a disturbed environment created by anthropic activities at different places in the world, while resident biotypes may persist in less altered habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bayhan E, Ulusoy MR, Brown JK (2006) Host range, distribution, and natural enemies of Bemisia tabaci ‘B biotype’ (Hemiptera: Aleyrodidae) in Turkey. J Pest Sci 79:233–240. doi:10.1007/s10340-006-0139-4

    Article  Google Scholar 

  • Bonato O, Lurette A, Vidal C, Fargues J (2007) Modelling temperature-dependant bionomics of Bemisia tabaci (Q-biotype). Physiol Entomol 32:50–55. doi:10.1111/j.1365-3032.2006.00540.x

    Article  Google Scholar 

  • Bourriquet G (1938) Note concernant les maladies des plantes cultivées à La Réunion. Rev Agricole Reun 43:33–38

    Google Scholar 

  • Boykin LM, Shatters RGJ, Rosell RC, McKenzie CL, Bagnall RA, De Barro PJ et al (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 16:1306–1319. doi:10.1016/j.ympev.2007.04.020

    Article  CAS  Google Scholar 

  • Brown JK (2000) Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Res 71:233–260. doi:10.1016/S0168-1702(00)00221-5

    Article  PubMed  CAS  Google Scholar 

  • Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol 40:511–534. doi:10.1146/annurev.en.40.010195.002455

    Article  CAS  Google Scholar 

  • Byrne D, Miller WB (1990) Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. J Insect Physiol 36:433–439. doi:10.1016/0022-1910(90)90061-J

    Article  CAS  Google Scholar 

  • Carey JR (1982) Demography and population dynamics of the Mediterranean fruit fly. Ecol Modell 16:125–150. doi:10.1016/0304-3800(82)90005-9

    Article  Google Scholar 

  • Case TJ, Bolger DT, Petren K (1994) Invasions and competitive displacement among house geckos in the tropical Pacific. Ecology 75:464–477. doi:10.2307/1939550

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer Associates Inc Sunderland, Massachusetts

    Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Costa HS, Brown JK (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomol Exp Appl 61:211–219. doi:10.1007/BF00187724

    Article  Google Scholar 

  • Crawley MJ (1993) GLIM for ecologists. Blackwell, Oxford

    Google Scholar 

  • De Barro PJ, Bourne A, Khan SA, Brancatini VAL (2006) Host plant and biotype density interactions—their role in the establishment of the invasive B biotype of Bemisia tabaci. Biol Invasions 8:287–294. doi:10.1007/s10530-005-1261-6

    Article  Google Scholar 

  • Delatte H, Reynaud B, Granier M, Thornary L, Lett JM, Goldbach R et al (2005) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous of the islands of the south-west Indian Ocean. Bull Entomol Res 95:29–35. doi:10.1079/BER2004337

    Article  PubMed  CAS  Google Scholar 

  • Delatte H, David P, Granier M, Lett JM, Goldbach R, Peterschmitt M et al (2006) Microsatellites reveal the coexistence and genetic relationships between invasive and indigenous whitefly biotypes in an insular environment. Genet Res 87:109–124. doi:10.1017/S0016672306008135

    Article  PubMed  CAS  Google Scholar 

  • Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 29:471–504. doi:10.1146/annurev.en.29.010184.002351

    Article  Google Scholar 

  • Dolatti L, Ghareyazie B, Moharramipour S, Noori-Daloii MR (2005) Evidence for regional diversity and host adaptation in Iranian populations of the Russian wheat aphid. Entomol Exp Appl 114:171–180. doi:10.1111/j.1570-7458.2005.00247.x

    Article  CAS  Google Scholar 

  • Duyck PF, David P, Junod G, Brunel C, Dupont R, Quilici S (2006) Importance of competition mechanisms in successive invasions by polyphagous tephritids in La Reunion. Ecology 87:1770–1780. doi:10.1890/0012-9658(2006)87[1770:IOCMIS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Duyck PF, David P, Quilici S (2007) Can more K-selected species be better invaders? A case study of fruit flies in La Réunion. Divers Distrib 13:535–543. doi:10.1111/j.1472-4642.2007.00360.x

    Article  Google Scholar 

  • Ebert T (1999) Plant and animal populations—methods in demography. Harcourt Brace & Company, San Diego

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, London

    Google Scholar 

  • Fargette D, Konate G, Fauquet C, Muller E, Peterschmitt M, Thresh JM (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44:235–260. doi:10.1146/annurev.phyto.44.120705.104644

    Article  PubMed  CAS  Google Scholar 

  • Frohlich DR, Torres-Jerez I, Bedford ID, Markham PG, Brown JK (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol Ecol 8:1683–1691. doi:10.1046/j.1365-294x.1999.00754.x

    Article  PubMed  Google Scholar 

  • Ganeshan S, Abeeluck D (2000) First record of the silverleaf whitefly, Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae), from Mauritius. Afr Entomol 8:303–304

    Google Scholar 

  • Gillespie RG, Roderick GK (2002) Arthropods on islands: colonization, speciation, and conservation. Annu Rev Entomol 47:595–632. doi:10.1146/annurev.ento.47.091201.145244

    Article  PubMed  CAS  Google Scholar 

  • Guirao P, Beitia F, Cenis JL (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 87:587–593

    Google Scholar 

  • Hebert C, Berthiaume R, Bauce E, Brodeur J (2006) Geographic biotype and host-associated local adaptation in a polyphagous species, Lambdina fiscellaria (Lepidoptera: Geometridae) feeding on balsam fir on Anticosti Island, Canada. Bull Entomol Res 96:619–627. doi:10.1017/BER2006464

    Article  PubMed  CAS  Google Scholar 

  • Horowitz AR, Denholm I, Gorman K, Cenis JL, Kontsedalov S, Ishaaya I (2003) Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31:94–98

    Article  Google Scholar 

  • Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225. doi:10.1002/arch.20044

    Article  PubMed  CAS  Google Scholar 

  • Isaacs R, Byrne DN, Hendrix DL (1998) Feeding rates and carbohydrate metabolism by Bemisia tabaci (Homoptera: Aleyrodidae) on different quality phloem saps. Physiol Entomol 23:241–248. doi:10.1046/j.1365-3032.1998.233080.x

    Article  CAS  Google Scholar 

  • Jones D (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219. doi:10.1023/A:1022846630513

    Article  Google Scholar 

  • Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574. doi:10.1111/j.1461-0248.2005.00755.x

    Article  PubMed  Google Scholar 

  • Jyoti JL, Michaud JP (2005) Comparative biology of a novel strain of Russian wheat aphid (Homoptera: Aphididae) on three wheat cultivars. J Econ Entomol 98:1032–1039

    PubMed  CAS  Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80. doi:10.1046/j.1461-0248.2003.00551.x

    Article  Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Google Scholar 

  • Lima LHC, Campos L, Moretzsohn MC, Navia D, Oliveira MRV (2002) Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genet Mol Biol 25:217–223

    CAS  Google Scholar 

  • Lodge DM (1993) Biological invasions—lessons for ecology. Trends Ecol Evol 8:133–137. doi:10.1016/0169-5347(93)90025-K

    Article  Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

    Google Scholar 

  • Luziau R (1953) Contribution à la prospection phytosanitaire de l’île de la Réunion. Phytoma 6:13–19

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Muniz M, Nombela G (2001) Differential variation in development of the B- and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environ Entomol 30:720–727

    Google Scholar 

  • Nombela G, Beitia F, Muniz M (2001) A differential interaction study of Bemisia tabaci Q biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B biotype. Entomol Exp Appl 98:339–344. doi:10.1023/A:1018911114463

    Article  Google Scholar 

  • Nylin S, Gotthard K (1998) Plasticity in life-history traits. Annu Rev Entomol 43:63–83. doi:10.1146/annurev.ento.43.1.63

    Article  PubMed  CAS  Google Scholar 

  • Pascual S (2006) Mechanisms in competition, under laboratory conditions, between Spanish biotypes B and Q of Bemisia tabaci (Gennadius). Span J Agric Res 4:351–354

    Google Scholar 

  • Pascual S, Callejas C (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull Entomol Res 4:369–375

    Google Scholar 

  • Perring TM (2001) The Bemisia tabaci species complex. Crop Prot 20:725–737. doi:10.1016/S0261-2194(01)00109-0

    Article  Google Scholar 

  • Perring TM, Cooper AD, Rodriguez RJ, Farrar CA, Bellows TS (1993) Identification of a whitefly species by genomic and behavioral studies. Science 259:74–77. doi:10.1126/science.8418497

    Article  PubMed  CAS  Google Scholar 

  • Peterschmitt M, Granier M, Mekdoud R, Dalmon A, Gambin O, Vayssieres JF, Reynaud B (1999) First report of tomato yellow leaf curl virus in Réunion Island. Plant Disease 83:303

    Article  Google Scholar 

  • R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. doi:10.2307/2265768

    Article  Google Scholar 

  • Rekha AR, Maruthi MN, Muniyappa V, Colvin J (2005) Occurrence of three genotypic clusters of Bemisia tabaci and the rapid spread of the B biotype in South India. Entomol Exp Appl 117:221–233. doi:10.1111/j.1570-7458.2005.00352.x

    Article  Google Scholar 

  • Reynaud B, Wuster G, Delatte H, Soustrade I, Lett JM, Gambin O et al (2003) Les maladies à bégomovirus chez la tomate dans les départements français d’Outre-Mer. Phytoma 562:13–17

    Google Scholar 

  • Roff DA (1981) On being the right size. Am Nat 118:405–422. doi:10.1086/283832

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Shatters RG, Boykin LM, Bagnall RA, Rosell RC, Frohlich DR, McKenzie CL (2006) Population genetics of Bemisia tabaci biotypes B and Q from the Mediterranean and the U.S. inferred using microsatellite markers. 4th International Bemisia workshop, Duck Key, Florida

  • Shorrocks B, Rosewell J, Edwards K, Atkinson W (1984) Interspecific competition is not a major organizing force in many Insect communities. Nature 310:310–312. doi:10.1038/310310a0

    Article  Google Scholar 

  • Smith TB, Bernatchez L (2008) Evolutionary change in human-altered environments. Mol Ecol 17:1–8

    Article  PubMed  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16. doi:10.2307/1939377

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:218–228

    Google Scholar 

  • Wertheim B, Sevenster JG, Eijs IEM, Van Alphen JJM (2000) Species diversity in a mycophagous insect community: the case of spatial aggregation vs. resource partitioning. J Anim Ecol 69:335–351. doi:10.1046/j.1365-2656.2000.00396.x

    Article  Google Scholar 

  • Yang AC, Chi H (2006) Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J Econ Entomol 99:691–698

    Article  PubMed  Google Scholar 

  • Yokomi RK, Hoelmer KA, Osborne LS (1990) Relationships between the sweetpotato whitefly and the squash silverleaf disorder. Phytopathology 80:895–900. doi:10.1094/Phyto-80-895

    Article  Google Scholar 

  • Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J Appl Entomol 129:121–128. doi:10.1111/j.1439-0418.2005.00950.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to greatly thank Caroline Domerg and Frédéric Chiroleu for their help in the statistical analysis. This study was funded by CIRAD and the Conseil Régional of La Réunion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Delatte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delatte, H., Duyck, PF., Triboire, A. et al. Differential invasion success among biotypes: case of Bemisia tabaci . Biol Invasions 11, 1059–1070 (2009). https://doi.org/10.1007/s10530-008-9328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9328-9

Keywords

Navigation