Skip to main content

Advertisement

Log in

A Panax-centric view of invasive species

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Plant-centric sampling provides a novel approach to quantifying the potential impact of invasive species on native plant species. The aim of this study was to determine the level of exposure of individuals and populations of Panax quinquefolius to invasive plant species using this approach in thirty natural ginseng populations. A high level of invasion was found with 63–70% of ginseng populations containing at least one invasive species. Approximately one-third of all individuals were found in close proximity to invasive plants. The most prevalent invasive species were Rosa multiflora and Berberis thunbergii. The exposure to invasives of plants in different size classes varied among populations. Invasive species presence increased with greater ginseng population sizes and presence of harvest. The abundance of invasives plants within forest interiors near this valuable medicinal herb suggests that the economic and ecological costs of competitive interactions with native species could be high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RC, Fralish JS, Armstrong JE (1993) The ecology and biology of Panax quinquefolium L. (Araliaceae) in Illinois. Am Midl Nat 129:357–372. doi:10.2307/2426517

    Article  Google Scholar 

  • Antonovics J, Primack RB (1982) Experimental ecological genetics in Plantago. VI. The demography of seedling transplants of P. lanceolata. J Ecol 70:55–75. doi:10.2307/2259864

    Article  Google Scholar 

  • Bailey B (1999) Social and economic impacts of wild harvested products. Ph.D. Dissertation,West Virginia University, Morgantown, WV

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301(5):1377–1380. doi:10.1126/science.1083245

    Article  PubMed  CAS  Google Scholar 

  • Brothers TS, Spingam A (1992) Forest fragmentation and alien plant invasion of central Indiana old-growth forests. Conserv Biol 6(1):91–100. doi:10.1046/j.1523-1739.1992.610091.x

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol 2(8):436–443

    Google Scholar 

  • Charron D, Gagnon D (1991) The demography of northern populations of Panax quinquefolium (American ginseng). J Ecol 79(2):431–445. doi:10.2307/2260724

    Article  Google Scholar 

  • Cruse-Sanders JM, Hamrick JL (2004) Spatial and genetic structure within populations of wild American ginseng (Panax quinquefolius L. Araliaceae). J Hered 95(4):309–321. doi:10.1093/jhered/esh046

    Article  PubMed  CAS  Google Scholar 

  • De Feo V, De Martino L, Quaranta E, Pizza C (2003) Isolation of phytotoxic compounds from tree-of-heaven (Ailanthus altissima Swingle). J Agric Food Chem 51(5):1177–1180. doi:10.1021/jf020686+

    Article  PubMed  CAS  Google Scholar 

  • Dorning M, Cipollini D (2005) Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol 184(2):287–296. doi:10.1007/s11258-005-9073-4

    Article  Google Scholar 

  • Drummond BA (2005) The selection of native and invasive plants by frugivorous birds in Maine. Northeast Nat 12(1):33–44. doi:10.1656/1092-6194(2005)012[0033:TSONAI]2.0.CO;2

    Article  Google Scholar 

  • Dyess JG, Causey MK, Striblin HL, Lockaby BG (1994) Effects of fertilization on production and quality of Japanese honeysuckle. Southern J Appl Forestry 18:68–71

    Google Scholar 

  • Ehrenfeld JG (1997) Invasion of deciduous forest preserves in the New York metropolitan region by Japanese barberry (Berberis thunbergii DC). J Torrey Bot Soc 124(2):210–215. doi:10.2307/2996586

    Article  Google Scholar 

  • Ehrenfeld JG, Scott NS (2001) Invasive species and the soil: effects on organisms and ecosystem processes. Ecol Appl 11(5):1259–1260. doi:10.1890/1051-0761(2001)011[1259:ISATSE]2.0.CO;2

    Article  Google Scholar 

  • Handley CO (1945) Japanese honeysuckle in wildlife. J Wildl Manage 9:261–264. doi:10.2307/3796367

    Article  Google Scholar 

  • Hardt RA (1986) Japanese honeysuckle: from “one of the best” to ruthless pest. Arnoldia 25(3):27–34

    Google Scholar 

  • Heisey RM (1990) Allelopathic and herbicidal effects of extracts from Tree of Heaven (Ailanthus altissima). Am J Bot 77(5):662–670. doi:10.2307/2444812

    Article  Google Scholar 

  • Heisey RM (1996) Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am J Bot 83(2):192–200. doi:10.2307/2445938

    Article  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6(3):324–337. doi:10.1046/j.1523-1739.1992.06030324.x

    Article  Google Scholar 

  • Jordan NR, Larson DL, Huerd SC (2007) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10(2):177–190

    Article  Google Scholar 

  • Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315. doi:10.2307/3088649

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16(4):199–204. doi:10.1016/S0169-5347(01)02101-2

    Article  PubMed  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11):3152–3166

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905. doi:10.1016/S0038-0717(03)00120-2

    Article  CAS  Google Scholar 

  • Landenberger RE, Kota NL, McGraw JB (2007) Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol 192(1):55–70. doi:10.1007/s11258-006-9226-0

    Article  Google Scholar 

  • Lundgren MR, Small CJ, Dreyer GD (2004) Influence of land use and site characteristics on invasive plant abundance in the Quinebaug highlands of southern New England. Northeast Nat 11(3):313–332. doi:10.1656/1092-6194(2004)011[0313:IOLUAS]2.0.CO;2

    Article  Google Scholar 

  • Marvier M, Karieva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24(4):869–878. doi:10.1111/j.0272-4332.2004.00485.x

    Article  PubMed  Google Scholar 

  • McCarthy B (1997) Response of a forest understory community to experimental removal of an invasive nonindigenous plant (Alliaria petiolata, Brassicaceae). In: Luken JO, Thieret JW (eds) Assessment and management of plant invasions. Springer-Verlag, New York, pp 117–130

    Google Scholar 

  • McGraw JB, Furedi MA (2005) Deer browsing and population viability of a forest understory plant. Science 307:920–922. doi:10.1126/science.1107036

    Article  PubMed  CAS  Google Scholar 

  • McGraw JB, Sers SM, Van der Voort ME (2003) Distribution and abundance of Hydrastis canadensis L. (Ranunculaceae) and Panax quinquefolius L. (Araliaceae) in the central Appalachian region. J Torrey Bot Soc 130(2):62–69. doi:10.2307/3557530

    Article  Google Scholar 

  • McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83(1):31–44. doi:10.2307/2261148

    Article  Google Scholar 

  • Meekins JF, McCarthy BC (2001) Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecol Appl 11(5):1336–1348. doi:10.1890/1051-0761(2001)011[1336:EOEVOT]2.0.CO;2

    Article  Google Scholar 

  • Mitchell CG, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627. doi:10.1038/nature01317

    Article  PubMed  CAS  Google Scholar 

  • Mooney EH, McGraw JB (2007) Alteration of selection regime resulting from harvest of American ginseng, Panax quinquefolius. Conserv Genet 8:57–67. doi:10.1007/s10592-006-9148-3

    Article  Google Scholar 

  • Myers JA, Vellend M, Gardescu S, Marks PL (2004) Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America. Oecologia 139(1):1432–1939

    Google Scholar 

  • Myster RW, Pickett STA (1992) Dynamics of associations between plants in ten old fields during 31 years of succession. J Ecol 80:291–302. doi:10.2307/2261012

    Article  Google Scholar 

  • Nagel JM, Griffin KL (2004) Can gas-exchange characteristics help explain the invasive success of Lythrum salicaria?. Biol Invasions 6:101–111. doi:10.1023/B:BINV.0000010125.93370.32

    Article  Google Scholar 

  • Nuzzo V (1999) Invasion pattern of the herb garlic mustard (Alliaria petiolata) in high quality forests. Biol Invasions 1:169–179. doi:10.1023/A:1010009514048

    Article  Google Scholar 

  • Oswalt CM, Oswalt SN (2007) Winter litter disturbance facilitates the spread of the nonnative invasive grass Microstegium vimineum (Trin.) A. Camus. For Ecol Manage 249(3):199–203

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi:10.1016/j.ecolecon.2004.07.013

    Article  Google Scholar 

  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91(2):285–288. doi:10.3732/ajb.91.2.285

    Article  Google Scholar 

  • Robbins CS (2000) Comparative analysis of management regimes and medicinal plant trade monitoring mechanisms for American ginseng and goldenseal. Conserv Biol 14:1422–1434. doi:10.1046/j.1523-1739.2000.99100.x

    Article  Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata] (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152. doi:10.1674/0003-0031(2001)146[0146:EOGMAP]2.0.CO;2

    Article  Google Scholar 

  • Rose SL, Perry DA, Pilz D, Schoeneberger MM (1983) Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi. J Chem Ecol 9(8):1153–1162. doi:10.1007/BF00982218

    Article  Google Scholar 

  • Seo H, Anderson RC (1990) Effect of soil microbial and mycorrhizal associations on the productivity and photosynthetic rates of Panax quinquefolium L. Myco Soc Am Newsl 41:4

    Google Scholar 

  • Shahi DP (2007) Effects of density on reproduction and demographic structures of American ginseng (Panax quinquefolius) populations in Ohio. PhD dissertation. Bowling Green State University; Bowling Green, OH

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Steavenson HA (1946) Multiflora rose for farm hedges. J Wildl Manage 10(3):227–234. doi:10.2307/3795837

    Article  Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4(5):0727–0731

    Article  CAS  Google Scholar 

  • Stolgren TJ, Schell LD, Heuvel BV (1999) How grazing and soil quality affect native and exotic plant diversity in rocky mountain grasslands. Ecol Appl 9:45–64. doi:10.1890/1051-0761(1999)009[0045:HGASQA]2.0.CO;2

    Article  Google Scholar 

  • Thomson D (2005) Measuring the effects of invasive species on the demography of a rare endemic plant. Biol Invasions 7:615–624. doi:10.1007/s10530-004-5853-3

    Article  Google Scholar 

  • United States Department of Agriculture, Natural Resources Conservation Service (2007) The PLANTS Database (http://plants.usda.gov, 11 December 2007). National Plant Data Center, Baton Rouge, LA 70874-4490 USA

  • United States Fish and Wildlife Service (2005) Convention permit applications for wild American ginseng harvested in 2005. Washington, DC, USA

  • Van der Voort ME, McGraw JB (2006) Effects of harvester behavior on populations growth rate affects sustainability of ginseng trade. Biol Conserv 130:505–516. doi:10.1016/j.biocon.2006.01.010

    Article  Google Scholar 

  • Vellend M (2002) A pest and an invader: white-tailed deer (Odocoileus virginianus Zimm.) as a seed dispersal agent for honeysuckle shrubs (Lonicera L.). Nat Areas J 22(3):230–234

    Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Watson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238(4828):802–804. doi:10.1126/science.238.4828.802

    Article  PubMed  Google Scholar 

  • Weber JS, Gibson KD (2007) Exotic plant species in old-growth forest in Indiana. Weed Sci 55:299–304. doi:10.1614/WS-06-164.1

    Article  CAS  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Philips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48(8):607–615. doi:10.2307/1313420

    Article  Google Scholar 

  • Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160(6):705–711. doi:10.1086/343872

    Article  PubMed  Google Scholar 

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55(6):477–488. doi:10.1641/0006-3568(2005)055[0477:BNGSCA]2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by NSF grant DEB-0613611 to J. B. McGraw. We also would like to thank numerous people who contributed to this project, especially landowners, and those assisting with annual censuses - Emily Mooney, Alyssa Hanna, Sara Souther, Adam Martin, Allison Kenyon, Anne Lubbers, Mark Guido, David Kazyak and Clare Maloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Wixted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wixted, K., McGraw, J.B. A Panax-centric view of invasive species. Biol Invasions 11, 883–893 (2009). https://doi.org/10.1007/s10530-008-9301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9301-7

Keywords

Navigation