A silent invasion

Abstract

Invasions mediated by humans have been reported from around the world, and ships’ ballast water has been recognized as the main source of marine invaders worldwide. Some invasions have dramatic economic and ecological consequences. On the other hand, many invasions especially in the marine realm, can go unnoticed. Here we identify a human mediated, worldwide introduction of the hydrozoan species Turritopsis dohrnii. The normal life cycle of hydrozoans involves the asexual budding of medusae from colonial polyps. Medusae of Turritopsis, however, when starved or damaged, are able to revert their life cycle, going back to the polyp stage through a process called transdifferentiation. They can thus easily survive through long journeys in cargo ships and ballast waters. We have identified a clade of the mitochondrial 16S gene in Turritopsis which contains individuals collected from Japan, the Pacific and Atlantic coasts of Panama, Florida, Spain, and Italy differing from each other in only an average of 0.31% of their base-pairs. Fifteen individuals from Japan, Atlantic Panama, Spain, and Italy shared the same haplotype. Turritopsis dohrnii medusae, despite the lack of genetic differences, are morphologically different between the tropical and temperate locations we sampled, attesting to a process of phenotypic response to local conditions that contributes to making this grand scale invasion a silent one.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

  1. Bavestrello G, Sommer C, Sarà M (1992) Bi-directional conversion in Turritopsis nutricula (Hydrozoa). In: J Bouillon F Boero F Cicogna JM Gili and RG Hughes (eds) Aspects of Hydrozoan biology Sci Mar 56:137–140

  2. Boero F, Bouillon J (1993) Zoogeography and life cycle patterns of Mediterranean hydromedusae (Cnidaria). Biol J Linn Soc 48:239–266

    Google Scholar 

  3. Bouillon J, Gravili C, Pagès F et al (2006) An introduction to Hydrozoa. Publ Sci Mus Paris 14:1–591

    Google Scholar 

  4. Brodeur RD, Sugisaki H, Hunt GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103. doi:10.3354/meps233089

    Article  Google Scholar 

  5. Carlton JT (1989) Man’s role in changing the face of the ocean: biological invasion and implications for conservation of nearshore environments. Conserv Biol 3:265–273. doi:10.1111/j.1523-1739.1989.tb00086.x

    Article  Google Scholar 

  6. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82. doi:10.1126/science.261.5117.78

    Article  Google Scholar 

  7. Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558. doi:10.1126/science.279.5350.555

    PubMed  Article  CAS  Google Scholar 

  8. Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochem Syst Ecol 21:57–69. doi:10.1016/0305-1978(93)90009-G

    Article  CAS  Google Scholar 

  9. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96. doi:10.2307/1543089 Woods Hole

    PubMed  Article  CAS  Google Scholar 

  10. Fukui Y (1995) Seasonal changes in testicular structure of the sea Anemone Haliplanella lineata (Coelenterata: Actiniara). Invertebr Rep Dev 27:197–204

    Google Scholar 

  11. Gould SJ (1977) Ontogeny and phylogeny. The Belknap Press of Harvard University Press, Cambridge MA

    Google Scholar 

  12. Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol (Berl) 146:213–222. doi:10.1007/s00227-004-1434-3

    Article  CAS  Google Scholar 

  13. Grosholz ED, Ruiz MG (1996) Predicting the impact of introduced marine species: lessons from the multiple invasions of the European green crab Carcinus maenas. Biol Conserv 78(1–2):59–66

    Article  Google Scholar 

  14. Grosholz ED, Ruiz GM (2003) Biological invasions drive size increases in marine and estuarine invertebrates. Ecol Lett 6:700–705. doi:10.1046/j.1461-0248.2003.00495.x

    Article  Google Scholar 

  15. Hasegawa M, Kishino K, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. doi:10.1007/BF02101694

    PubMed  Article  CAS  Google Scholar 

  16. Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologia 420:63–71. doi:10.1023/A:1003929519809

    Article  CAS  Google Scholar 

  17. Holland BS, Dawson MN, Crow GL et al (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol (Berl) 145:1119–1128. doi:10.1007/s00227-004-1409-4

    Article  Google Scholar 

  18. Huey RB, Gilchrist GW, Carlson ML et al (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309. doi:10.1126/science.287.5451.308

    PubMed  Article  CAS  Google Scholar 

  19. Johnston RF, Selander RK (1964) House sparrow: rapid evolution of races in North America. Science 144:548–550. doi:10.1126/science.144.3618.548

    PubMed  Article  Google Scholar 

  20. Kubota S (2005) Distinction of two morphotypes of Turritopsis nutricula medusae (Cnidaria Hydrozoa Anthomedusae) in Japan with reference to their different abilities to revert to the hydroid stage and their distinct geographical distributions. Biogeography 7:41–50

    Google Scholar 

  21. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    PubMed  Article  CAS  Google Scholar 

  22. Mackie JA, Kenough MJ, Christinidis L (2006) Invasion pattern inferred from cytochrome oxidase I sequences in three bryozoans Bugula neritina, Watersipora subtorquata and Watersipora arcuata. Mar Biol (Berl) 149:285–295. doi:10.1007/s00227-005-0196-x

    Article  CAS  Google Scholar 

  23. Maddison DR, Maddison WP (2000) MacClade version 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland Massachusetts

    Google Scholar 

  24. Miglietta MP, Piraino S, Kubota S et al (2007) Species in the genus Turritopsis (Cnidaria Hydrozoa) a molecular evaluation. J Zoolog Syst Evol Res 45:11–19. doi:10.1111/j.1439-0469.2006.00379.x

    Article  Google Scholar 

  25. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi:10.1073/pnas.091093398

    PubMed  Article  CAS  Google Scholar 

  26. Oakley TH, Cunningham CW (2000) Independent contrasts succeed where explicit ancestor reconstructions fail in a known bacteriophage phylogeny. Evolution Int J Org Evolution 54(2):397–405

    CAS  Google Scholar 

  27. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi:10.1016/j.ecolecon.2004.07.013

    Article  Google Scholar 

  28. Piraino S, Boero F, Aeschbach B et al (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria Hydrozoa). Biol Bull 190:302–312. doi:10.2307/1543022

    Article  Google Scholar 

  29. Piraino S, De Vito D, Schmich J et al (2004) Reverse development in Cnidaria. Can J Zool 82:1748–1754. doi:10.1139/z04-174

    Article  Google Scholar 

  30. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    PubMed  Article  CAS  Google Scholar 

  31. Savidge JA (1987) Extinction of an island forest avifauna by an introduced snake. Ecology 68:660–668. doi:10.2307/1938471

    Article  Google Scholar 

  32. Sax DF, Stachowicz JJ, Brown JH et al (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471. doi:10.1016/j.tree.2007.06.009

    PubMed  Article  Google Scholar 

  33. Schuchert P (2005) Species boundaries in the hydrozoan genus Coryne. Mol Phylogenet Evol 36:194–199. doi:10.1016/j.ympev.2005.03.021

    PubMed  Article  Google Scholar 

  34. Schuchert P (2006) The European athecate hydroids and their medusae (Hydrozoa Cnidaria): capitata part 1. Rev Suisse Zool 113:325–410

    Google Scholar 

  35. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) version 4.0b10. Sinauer Associates, Sunderland Massachusetts

    Google Scholar 

  36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    PubMed  Article  CAS  Google Scholar 

  37. Zabin CJ, Zardus J, Bettini Pitombo F, Fread V, Hadfield MG (2007) A tale of three seas: consistency of natural history traits in a Caribbean-Atlantic barnacle introduced to Hawaii. Biol Invasions 9:523–544. doi:10.1007/s10530-006-9056-y

    Article  Google Scholar 

  38. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion [http://wwwbioutexasedu/faculty/antisense/garli/Garlihtml] PhD dissertation, The University of Texas at Austin

Download references

Acknowledgments

We thank the staff of the Smithsonian Marine Stations of Naos, Bocas del Toro, Galeta and Fort Pierce for logistical support. We also thank S. Piraino for sharing information, A. Faucci and M. Rossi for discussion and suggestions on the manuscript, A. Driskell for DNA extraction and sequencing of some of the specimens, and C.S. Dugas for collecting some of the specimens from Bocas del Toro. This work was funded by a Smithsonian Marine Science Network postdoctoral fellowship to M.P.M.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Pia Miglietta.

Appendix

Appendix

Examined material: sequence name as it appears on the tree (Fig. 1), localities, collection dates, type of material (polyp or medusa) and GenBank accession numbers. Sequences from Miglietta et al. (2007) are shaded

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miglietta, M.P., Lessios, H.A. A silent invasion. Biol Invasions 11, 825–834 (2009). https://doi.org/10.1007/s10530-008-9296-0

Download citation

Keywords

  • Invasive species
  • Morphological response
  • Hydrozoa
  • Turritopsis
  • Medusa