Skip to main content
Log in

Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasion by Acacia longifolia alters soil characteristics and processes. The present study was conducted to determine if the changes in soil C and N pools and processes induced by A. longifolia persist after its removal, at the São Jacinto Dunes Nature Reserve (Portugal). Some areas had been invaded for a long time (>20 years) and others more recently (<10 years). For each type of invasion, (i.e., long-invaded and recently invaded), three treatments were used: (1) A. longifolia left intact; (2) A. longifolia was removed; and (3) both A. longifolia and litter layer were removed. Soil samples were collected once a year for four and half years and analysed for chemical and microbial properties. In general, microbial parameters responded faster than C and N pools. In long-invaded areas, two and half years after removal of plants and litter, basal respiration and microbial biomass had already decreased >30%, β-glucosaminidase activity (N mineralization index) >60% and potential nitrification >95%. Removal of plants and litter resulted in a >35% decrease in C and N content after four and half years. In recently invaded areas, β-glucosaminidase activity and potential nitrification showed a marked decrease (>54% and >95%, respectively) after removal of both A. longifolia and litter. Our results suggest that after removal of an N2-fixing invasive tree that changes ecosystem-level processes, it takes several years before soil nutrients and processes return to pre-invasion levels, but this legacy slowly diminish, suggesting that the susceptibility of native areas to (re)invasion is a function of the time elapsed since removal. Removal of the N-rich litter layer facilitates ecosystem recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LI:

Areas long-invaded by A. longifolia (>20 years)

LIA:

Areas long-invaded where A. longifolia was left intact

LIAR:

Areas long-invaded where only A. longifolia was removed

LIALR:

Areas long-invaded where both A. longifolia and the litter layer were removed

RI:

Areas recently invaded by A. longifolia (<10 years)

RIA:

Areas recently invaded where A. longifolia was left intact

RIAR:

Areas recently invaded where only A. longifolia was removed

RIALR:

Areas recently invaded where both A. longifolia and the litter layer were removed

References

  • Aaronson S (1970) Experimental microbial ecology. Academic Press, New York, p 236

    Google Scholar 

  • Allison M, Ausden M (2006) Effects of removing the litter and humic layers on heathland establishment following plantation removal. Biol Conserv 127:177–182. doi:10.1016/j.biocon.2005.08.008

    Article  Google Scholar 

  • Alpert P, Maron JL (2000) Carbon addition as a countermeasure against biological invasion by plants. Biol Invasions 2:33–40. doi:10.1023/A:1010063611473

    Article  Google Scholar 

  • Alves JMS, Santo MDE, Costa JC, Gonçalves JHC, Lousã MF (1998) Habitats Naturais e Seminaturais de Portugal Continental. Instituto da Conservação da Natureza, Lisbon Portugal, 55 pp

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221. doi:10.1016/0038-0717(78)90099-8

    Article  CAS  Google Scholar 

  • Andersson M, Kjøller A, Struwe S (2004) Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biol Biochem 36:1527–1537. doi:10.1016/j.soilbio.2004.07.018

    Article  CAS  Google Scholar 

  • Blumenthal D (2005) Interrelated causes of plant invasion. Science 310:243–244. doi:10.1126/science.1114851

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and facilitates prairie restoration. Ecol Appl 13:605–615. doi:10.1890/1051-0761(2003)013[0605:SCACWA]2.0.CO;2

    Article  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis. Part 2: chemical and microbiological properties. American Society of Agronomy, Inc. Publisher, Madison USA, pp 1149–1176

    Google Scholar 

  • Coleman HM, Levine JM (2007) Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biol Invasions 9:65–71. doi:10.1007/s10530-006-9008-6

    Article  Google Scholar 

  • Corbin JD, D’Antonio CM (2004) Effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol 18:1464–1467

    Article  CAS  Google Scholar 

  • D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713. doi:10.1046/j.1526-100X.2002.01051.x

    Article  Google Scholar 

  • Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428. doi:10.1046/j.1461-0248.2001.00246.x

    Article  Google Scholar 

  • Echeverría SR, Crisóstomo JA, Nabais C, Freitas H (2008) Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biol Invasions. doi:10.1007/s10530-008-9280-8

    Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2004) β-glucosaminidase activity as an index of nitrogen mineralization in soils. Commun Soil Sci Plann 35:1081–1094. doi:10.1081/CSS-120030588

    Article  CAS  Google Scholar 

  • Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8:975–989. doi:10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2

    Article  Google Scholar 

  • Gross KL, Mittelbach GG, Reynolds HL (2005) Grassland invasibility and diversity: responses to nutrients, seed input, and disturbance. Ecology 86:476–486. doi:10.1890/04-0122

    Article  Google Scholar 

  • Haubensak KA, D’Antonio CM, Alexander J (2004) Effects of nitrogen-fixing shrubs in Washington and coastal California. Weed Technol 18:1475–1479

    Article  Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985. doi:10.1111/j.1461-0248.2005.00802.x

    Article  Google Scholar 

  • Heneghan L, Fatemi F, Umek L, Grady K, Fagen K, Workman M (2006) The invasive shrub European buckthorn (Rhamnus cathartica L.) alters soil properties in Midwestern US woodlands. Appl Soil Ecol 32:142–148. doi:10.1016/j.apsoil.2005.03.009

    Article  Google Scholar 

  • Hobbs RJ, Humphries SE (1995) An integrated approach to the ecology and management of plant invasions. Conserv Biol 9:761–770. doi:10.1046/j.1523-1739.1995.09040761.x

    Article  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847. doi:10.1111/j.1365-2664.2006.01227.x

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Stark JM (2006) Soil history as a primary control on plant invasion in abandoned agricultural fields. J Appl Ecol 43:868–876. doi:10.1111/j.1365-2664.2006.01192.x

    Article  Google Scholar 

  • Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. P R Soc Lond B Bio 270:775–781. doi:10.1098/rspb.2003.2327

    Article  Google Scholar 

  • Marchante H (2001) Invasão dos ecossistemas dunares portugueses por Acacia: uma ameaça para a biodiversidade nativa. Master thesis, Faculty of Sciences and Technology, University of Coimbra, Coimbra

  • Marchante H, Marchante E, Freitas H (2003) Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd.: effects at the community level. In: Child LE, Brock JH, Brundu G, Prach K, Pyšek P, Wade PM, Williamson M (eds) Plant invasion: ecological threats and management solutions. Backhuys Publishers, Leiden, The Netherlands, pp 75–85

    Google Scholar 

  • Marchante HS, Marchante EM, Buscardo E, Maia J, Freitas H (2004) Recovery potential of dune ecosystems invaded by an exotic Acacia species (Acacia longifolia). Weed Technol 18:1427–1433

    Article  Google Scholar 

  • Marchante E, Kjøller A, Struwe S, Freitas H (2007) Soil microbial activity in dune ecosystems in Portugal invaded by Acacia longifolia. In: Tokarska-Guzik B, Brock JH, Brundu G, Child L, Daehler CC, Pyšek P (eds) Plant invasions: human perception, ecological impacts and management. Backhuys Publishers, Leiden, The Netherlands, pp 247–257

    Google Scholar 

  • Marchante E, Kjøller A, Struwe S, Freitas H (2008) Short and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl Soil Ecol. doi:10.1016/j.apsoil.2008.04.004

    Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302–312. doi:10.1007/BF00328732

    Article  Google Scholar 

  • Maron JL, Jefferies RL (1999) Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80:443–454

    Article  Google Scholar 

  • Maron JL, Jefferies RL (2001) Restoring enriched grasslands: Effects of mowing on species richness, productivity, and nitrogen retention. Ecol Appl 11:1088–1100. doi:10.1890/1051-0761(2001)011[1088:REGEOM]2.0.CO;2

    Article  Google Scholar 

  • Miller M, Palojarvi A, Rangger A, Reeslev M, Kjoller A (1998) The use of fluorogenic substrates to measure fungal presence and activity in soil. Appl Environ Microbiol 64:613–617

    PubMed  CAS  Google Scholar 

  • Mitchell RJ, Marrs RH, Le Duc MG, Auld MHD (1999) A study of the restoration of heathland on successional sites: changes in vegetation and soil chemical properties. J Appl Ecol 36:770–783. doi:10.1046/j.1365-2664.1999.00443.x

    Article  Google Scholar 

  • Olff H, Huisman J, Van Tooren BF (1993) Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J Ecol 81:693–706. doi:10.2307/2261667

    Article  Google Scholar 

  • Peperkorn R, Werner C, Beyschlag W (2005) Phenotypic plasticity of an invasive acacia versus two native Mediterranean species. Funct Plant Biol 32:933–944. doi:10.1071/FP04197

    Article  Google Scholar 

  • Perry LG, Galatowitsch SM, Rosen CJ (2004) Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon-enriched soil. J Appl Ecol 41:151–162. doi:10.1111/j.1365-2664.2004.00871.x

    Article  CAS  Google Scholar 

  • Pickart AJ, Miller LM, Duebendorfer TE (1998) Yellow bush lupine invasion in Northern California coastal dunes I. Ecological impacts and manual restoration techniques. Restor Ecol 6:59–68. doi:10.1046/j.1526-100x.1998.00618.x

    Article  Google Scholar 

  • Prober SM, Thiele KR, Lunt ID, Koen TB (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J Appl Ecol 42:1073–1085. doi:10.1111/j.1365-2664.2005.01095.x

    Article  CAS  Google Scholar 

  • Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev Camb Philos Soc 81:1–31. doi:10.1017/S1464793105006846

    PubMed  Google Scholar 

  • Silva R (1977) Sector Fertilidade do Solo. Laboratório Químico-Agrícola. Ministério da Agricultura e Pescas, Lisbon

  • Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. doi:10.1016/j.tree.2006.07.007

    Article  PubMed  Google Scholar 

  • van den Berg LJL, Tomassen HBM, Roelofs JGM, Bobbink R (2005) Effects of nitrogen enrichment on coastal dune grassland: a mesocosm study. Environ Pollut 138:77–85. doi:10.1016/j.envpol.2005.02.024

    Article  PubMed  CAS  Google Scholar 

  • van der Putten WH, Peters BAM (1995) Possibilities for management of coastal foredunes with deteriorated stands of Ammophila arenaria (marram grass). J Coast Conserv 1:29–39

    Article  Google Scholar 

  • Vinton MA, Burke IC (1995) Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology 76:1116–1133. doi:10.2307/1940920

    Article  Google Scholar 

  • Vinton MA, Goergen EM (2006) Plant-soil feedbacks contribute to the persistence of Bromus inermis in tallgrass prairie. Ecosystems (N Y, Print) 9:967–976. doi:10.1007/s10021-005-0107-5

    Article  CAS  Google Scholar 

  • Wittenberg R, Cock MJW (2005) Best practices for the prevention and management of invasive alien species. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species. A new systhesis. Island Press, Washington, p 368

    Google Scholar 

  • Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor Ecol 12:44–51. doi:10.1111/j.1061-2971.2004.00289.x

    Article  Google Scholar 

  • Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function. Biol Invasions 9:117–125. doi:10.1007/s10530-006-0008-3

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Hélia Marchante, John Hoffmann, and Susana Echeverría for valuable discussions and checking of English grammar. Three anonymous reviewers provided helpful comments, which greatly improved a previous version of the manuscript. We are also grateful to Karin Vestberg for technical assistance. This research was supported by FCT-MCTES (Portuguese Foundation for Science and Technology) and European fund FEDER, project POCTI/BSE/42335/2001 & POCI(PPCDT)/AMB/61387/2004. E.M. was supported by a FCT-MCTES grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabete Marchante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchante, E., Kjøller, A., Struwe, S. et al. Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration. Biol Invasions 11, 813–823 (2009). https://doi.org/10.1007/s10530-008-9295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9295-1

Keywords

Navigation