Early phases of a successful invasion: mitochondrial phylogeography of the common genet (Genetta genetta) within the Mediterranean Basin

Abstract

The Mediterranean Basin, connected by cultural exchanges since prehistoric times, provides an outstanding framework to study species translocations. We address here the early phases of the successful invasion of the common genet (Genetta genetta), a small carnivoran supposedly introduced from Africa to Europe during historical times, by assessing mitochondrial nucleotide variability in 134 individuals from its native and invasive ranges. We identify four lineages within the native species range [northern Algeria, Peninsular Arabia, southern Africa and western Africa + Maghreb (including northern Algeria)], in contradiction with morphological taxonomy. We propose that the co-occurrence in Maghreb of two divergent lineages (autochthonous and western African) is due to secondary contact through intermittent permeability of the Saharan belt during the Plio-Pleistocene. Estimates of coalescence time and genetic diversity, in concert with other available evidences in the literature, indicate that the origin of European populations of common genets is in Maghreb, possibly restricted to northern Algeria. The autochthonous mitochondrial lineage of Maghreb was the only contributor to the European pool, suggesting that translocations were associated to a cultural constraint such as a local use of the species, which might have artificially excluded the western African lineage. Haplotype network and nested clade analysis (NCA) provide evidence for independent events of introductions throughout Spain (Andalucia, Cataluña, and the Balearic Isl.)—and, to a lesser extent, Portugal—acting as a ‘translocation hotspot’. Due to the reduced number of northern Algerian individuals belonging to the autochthonous mitochondrial lineage of Maghreb, it remains impossible to test hypotheses of historical translocations, although a main contribution of the Moors is likely. Our demographic analyses support a scenario of very recent introduction of a reduced number of individuals in Europe followed by rapid population expansion. We suggest that an exceptional combination of factors including multiple translocations, human-driven propagation across natural barriers, and natural processes of colonization allowed by a wide ecological tolerance, promoted the successful spread of the common genet into Europe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alcover JA (1980) Note on the origin of the present mammalian fauna from the Balearic and Pityusic islands. Misc Zool 6:141–149

    Google Scholar 

  2. Amigues S (1999) Les belettes de Tartessos. Anthropozool 29:55–64

    Google Scholar 

  3. Anderung C, Bouwman A, Persson P et al (2005) Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proc Natl Acad Sci 102:8431–8435

    PubMed  CAS  Google Scholar 

  4. Arbogast BS, Edwards SV, Wakeley J et al (2002) Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Ann Rev Ecol Syst 33:707–740

    Google Scholar 

  5. Arnaiz-Villena A, Martinez-Laso J, Alonso-Garcia J (1999) Iberia: population genetics, anthropology, and linguistics. Hum Biol 71:725–743

    PubMed  CAS  Google Scholar 

  6. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  7. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  8. Bate DMA (1903) On an extinct species of genet (Genetta plesictoides, sp. n.) from the Pleistocene of Cyprus. Proc Zool Soc Lond 2:121–124

    Google Scholar 

  9. Beja-Pereira A, Caramelli D, Lalueza-Fox C et al (2006) The origin of European cattle: evidence from modern and ancient DNA. Proc Natl Acad Sci USA 103:8113–8118

    PubMed  CAS  Google Scholar 

  10. Bellard CG (1995) The first colonization of Ibiza and Formentera (Balearic Islands, Spain): some more islands out of the stream? World Archaeol 26:442–445

    Article  Google Scholar 

  11. Belon du Mans P (1557) Portraits d’oiseaux, animaux, serpens, herbes, arbres, hommes et femmes d’Arabie & d’Egypte observés par P. Belon. Le tout enrichi de quatrains pour plus facile connaissance des oiseaux & autres portraits. G. Cavellat, Paris

    Google Scholar 

  12. Bernatchez L, Dodson JJ, Boivin S (1989) Population bottlenecks: influence on mitochondrial DNA diversity and its effect in coregine stock discrimination. J Fish Biol 35A:233–244

    Google Scholar 

  13. Boekschoeten GJ, Sondaar PY (1972) On the fossil Mammalia of Cyprus. Proc K Ned Acad Van Wetenschappen Ser C Biol Med Sci 75:306–338

    Google Scholar 

  14. Brandli L, Handley L-JL, Vogel P et al (2005) Evolutionary history of the greater white-toothed shrew (Crocidura russula) inferred from analysis of mtDNA, Y, and X chromosome markers. Mol Phylogenet Evol 37:832–844

    PubMed  Google Scholar 

  15. Casas MJ, Hagelberg E, Fregel R et al (2006) Human mitochondrial DNA diversity in an archaeological site in al-Andalus: genetic impact of migrations from North Africa in medieval Spain. Am J Phys Anthropol 131:539–551

    PubMed  Google Scholar 

  16. Castella V, Ruedi M, Excoffier L et al (2000) Is the Gibralatr Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertillonidae)? Mol Ecol 9:1761–1772

    PubMed  CAS  Google Scholar 

  17. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    PubMed  CAS  Google Scholar 

  18. Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. The University of Connecticut, Storrs

    Google Scholar 

  19. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101–118

    CAS  Google Scholar 

  20. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Google Scholar 

  21. Cosson J-F, Hutterer R, Libois R et al (2005) Phylogeographical footprints of the Strait of Gibraltar and quaternary fluctuations in the western Mediterranean: a case study with the greater white-toothed shrew, Crocidura russula (Mammalia: Soricidae). Mol Ecol 14:1151–1162

    PubMed  CAS  Google Scholar 

  22. Crawford-Cabral J (1981) The classification of the genets (Carnivora, Viverridae, genus Genetta). Bol Soc Port Ciênc Nat 20:97–114

    Google Scholar 

  23. Cymbron T, Loftus RT, Malheiro MI et al (1999) Mitochondrail sequence variation suggests an African influence in Portuguese cattle. Proc R Soc Lond B 266:597–603

    CAS  Google Scholar 

  24. Delibes M (1977) Sobre las Ginetas de la Isla de Ibiza (Genetta genetta isabelae n. ssp.). Doñana. Acta Vertebr 4:139–160

    Google Scholar 

  25. Delibes M, Gaubert P Genetta genetta Linneaus. In: Kingdon JS, Hoffmann M (eds) The mammals of Africa, vol 5. Carnivora, Pholidota, Perissodactyla. Academic Press, Amsterdam (in press)

  26. Dobson M (1998) Mammal distributions in the western Mediterranean: the role of human intervention. Mamm Rev 28:77–88

    Google Scholar 

  27. Dobson M, Wright A (2000) Faunal relationships and zoogeographical affinities of mammals in north-west Africa. J Biogeogr 27:417–424

    Google Scholar 

  28. Donlan J (2005) Re-wilding North America. Nature 436:913–914

    PubMed  CAS  Google Scholar 

  29. Edwards SV, Beerli P (2000) Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    PubMed  CAS  Google Scholar 

  30. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    PubMed  CAS  Google Scholar 

  31. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  32. Formia A, Broderick AC, Glen F et al (2007) Genetic composition of the Ascension Island green turtle rookery based on mitochondrial DNA: implications for sampling and diversity. ESR 3:145–158

    Google Scholar 

  33. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  34. Garrick RC, Dyer RJ, Beheregaray LB et al (2008) Babies and bathwater: a comment on the premature obituary for nested clade phylogeographical analysis. Mol Ecol 17:1401–1403

    PubMed  CAS  Google Scholar 

  35. Gaubert P, Begg CM (2007) Re-assessed molecular phylogeny and evolutionary scenario within genets (Carnivora, Viverridae, Genettinae). Mol Phylogenet Evol 44:920–927

    PubMed  CAS  Google Scholar 

  36. Gaubert P, Cordeiro-Estrela P (2006) Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for faunal exchanges between Asia and Africa. Mol Phylogenet Evol 41:266–278

    PubMed  CAS  Google Scholar 

  37. Gaubert P, del Cerro I, Palomares F et al. Development and characterization of 11 microsatellite loci in a historically introduced carnivoran, the common genet (Genetta genetta). Mol Ecol Resour (in press)

  38. Gaubert P, Fernandes CA, Bruford MW et al (2004a) Genets (Carnivora, Viverridae) in Africa: an evolutionary synthesis based on cytochrome b sequences and morphological characters. Biol J Linn Soc 81:589–610

    Google Scholar 

  39. Gaubert P, Tranier M, Delmas A-S et al (2004b) First molecular evidence for reassessing phylogenetic affinities between genets (Genetta) and the enigmatic genet-like taxa Osbornictis, Poiana and Prionodon (Carnivora, Viverridae). Zool Scr 33:117–129

    Google Scholar 

  40. Gaubert P, Veron G, Colyn M et al (2002) A reassessment of the distributional range of the rare Genetta johnstoni (Viverridae, Carnivora), with some newly discovered specimens. Mamm Rev 32:132–144

    Google Scholar 

  41. Gaubert P, Jiguet F, Bayle P et al (2008) Has the common genet (Genetta genetta) spread into south-eastern France and Italy? Ital J Zool 75:43–57

    Google Scholar 

  42. Geraads D (1997) Carnivores du Pliocène terminal de Ahl al Oughlam (Casablanca, Maroc). Geobios 30:127–164

    Google Scholar 

  43. Gippoliti S, Amori G (2006) Ancient introductions of mammals in the Mediterranean Basin and their implications for conservation. Mamm Rev 36:37–48

    Google Scholar 

  44. Gsell S (1913) Histoire ancienne de l’Afrique du Nord. Hachette, Paris

    Google Scholar 

  45. Guiller A, Coutellec-Vreto MA, Madec L et al (2001) Evolutionary history of the land snail Helix aspersa in the Western Mediterranean: preliminary results inferred from mitochondrial DNA sequences. Mol Ecol 10:81–87

    PubMed  CAS  Google Scholar 

  46. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  47. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  48. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–601

    PubMed  CAS  Google Scholar 

  49. Harris DJ, Carranza S, Arnold EN et al (2002) Complex biogeographical distribution of genetic variation within Podarcis wall lizards across the Strait of Gibraltar. J Biogeogr 29:1257–1262

    Google Scholar 

  50. Hasegawa M, Kishino H, Yano T-A (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    PubMed  CAS  Google Scholar 

  51. Hayes K, Barry S Are there any consistent predictors of invasion success? Biol Invasions (in press)

  52. Hendey QB (1974) The late Cenozoic Carnivora of the southwestern Cape province. Ann S Afr Mus 63:1–369

    Google Scholar 

  53. Jolly D, Harrison SP, Damnati B et al (1998) Simulated climate and biomes of Africa during the late Quaternary: comparison with pollen and lake status data. Quat Sci Rev 17:629–657

    Google Scholar 

  54. Juste J, Ibañez C, Muñoz J et al (2004) Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol Phylogenet Evol 31:1114–1126

    PubMed  CAS  Google Scholar 

  55. Keane TM, Naughton TJ, McInerney JO (2004) ModelGenerator: amino acid and nucleotide substitution model selection. National University of Ireland, Maynooth

    Google Scholar 

  56. Kingdon J (1977) East African Mammals: an atlas of evolution in Africa. Academic Press, London

    Google Scholar 

  57. Kock D (1983) Identifizierung der Palastina-Genetten von J. Aharoni als Vormela peregusna (Guldenstaedt, 1770). Z Saugetierkd 48:381–383

    Google Scholar 

  58. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5:150–163

    CAS  Google Scholar 

  59. Kuper R, Kröpelin S (2006) Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313:803–807

    PubMed  CAS  Google Scholar 

  60. Kurten B (2007) Pleistocene mammals of Europe. Transaction Pub, New Brunswick, London

    Google Scholar 

  61. Lee CE (2002) Evolutionary genetics of invasive species. TREE 17:386–391

    Google Scholar 

  62. Lessa EP, Cook JA, Patton JL (2003) Genetic footprints of demographic expansion in North America, but not Amazonia, during the late Quaternary. Proc Natl Acad Sci 100:10331–10334

    PubMed  CAS  Google Scholar 

  63. Libois RM, Michaux JR, Ramalhinho MG et al (2001) On the origin and systematics of the northern African wood mouse (Apodemus sylvaticus) populations: a comparative study of mtDNA restriction patterns. Can J Zool 79:1503–1511

    Google Scholar 

  64. Marra AC (2005) Pleistocene mammals of Mediterranean islands. Quat Int 129:5–14

    Google Scholar 

  65. Masseti M, Pecchioli E, Vernesi C (2008) Phylogeography of the last surviving populations of Rhodian and Anatolian fallow deer (Dama dama dama L., 1758). Biol J Linn Soc 93:835–844

    Google Scholar 

  66. Merdrignac B, Mérienne P (2003) Le monde au Moyen-Âge. Editions Ouest-France, Rennes, France

  67. Michaux JR, Magnanou E, Paradis E et al (2003) Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Mol Ecol 12:685–697

    PubMed  CAS  Google Scholar 

  68. Modolo L, Salzburger W, Martin RD (2005) Phylogeography of Barbary macaques (Macaca sylvanus) and the origin of the Gibraltar colony. Proc Natl Acad Sci 102:7392–7397

    PubMed  CAS  Google Scholar 

  69. Montoya P, Alcala L, Morales J (2001) First find of a Viverridae (Carnivora, Mammalia) in the Upper Miocene of the Teruel Basin (Spain). Bol R Soc Esp Hist Nat Geol 96:101–109

    Google Scholar 

  70. Morales A (1994) Earliest genets in Europe. Nature 370:512–513

    Google Scholar 

  71. Morales A, Rofes J (2008) Early evidence for the Algerian hedgehog in Europe. J Zool 274:9–12

    Google Scholar 

  72. Muñoz-Fuentes V, Green AJ, Sorenson MD et al (2006) The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction? Mol Ecol 15:1441–1453

    PubMed  Google Scholar 

  73. Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  74. Osborn DJ, Osbornova J (1998) The mammals of ancient Egypt. Aris & Phillips Ltd, Warminster

    Google Scholar 

  75. Ouchaou B, Amani F (2002) Les carnivores des gisements néolithiques et protohistoriques du nord du Maroc. Quaternaire 13:79–87

    Google Scholar 

  76. Palomares F Herpestes ichneumon. In: Kingdon JS, Hoffmann M (eds) The mammals of Africa, vol 5. Carnivores, Pangolins, Equids and Rhinos. Academic Press, Amsterdam (in press)

  77. Palomares F, Godoy JA, Piriz A et al (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182

    PubMed  CAS  Google Scholar 

  78. Panchal M, Beaumont MA (2007) The automation and evaluation of nested clade phylogeographic analysis. Evolution 61:1466–1480

    PubMed  Google Scholar 

  79. Paulo OS, Jordan WC, Bruford MW et al (2002) Using nested clade analysis to assess the history of colonization and the persistence of populations of an Iberian lizard. Mol Ecol 11:809–819

    PubMed  CAS  Google Scholar 

  80. Perrot A-M (1820) Collection historique des ordres de chevalerie civils et militaires, existant chez les différents peuples du monde, suivie d’un tableau chronologique des ordres éteints.. Aimé André, Paris

    Google Scholar 

  81. Petit RJ (2008a) The coup de grace for the nested clade phylogeographic analysis? Mol Ecol 17:516–518

    PubMed  Google Scholar 

  82. Petit RJ (2008b) On the falsifiability of the nested clade phylogeographic analysis method. Mol Ecol 17:1404–1404

    Google Scholar 

  83. Posada D, Buckley TR (2004) Empirical problems of the hierarchical likelihood ratio test for model selection. Syst Biol 53:949–962

    Google Scholar 

  84. Posada D, Templeton A (2006) GeoDis 2.5. Universidad de Vigo, Spain

    Google Scholar 

  85. Ramon-Laca L (2003) The introduction of cultivated citrus to Europe via northern Africa and the Iberian Peninsula. Econ Bot 57:502–514

    Google Scholar 

  86. Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656

    PubMed  CAS  Google Scholar 

  87. Rodríguez-Ariza M, Moya E (2005) On the origin and domestication of Olea europaea L. (olive) in Andalucía, Spain, based on the biogeographical distribution of its finds. Veg Hist Arch 14:551–561

    Google Scholar 

  88. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  89. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. TREE 22:454–464

    PubMed  Google Scholar 

  90. Romer AS (1928) Pleistocene mammals of Algeria: fauna of the Paleolithic station of Mechta el Arbi. Logan Mus Bull 2:79–163

    Google Scholar 

  91. Ronquist F, Huelsenbeck JP, van der Mark P (2005) MrBayes 3.1 manual. Florida State University, Tallahassee

    Google Scholar 

  92. Rozas J, Sánchez-DelBarrio JC, Messegyer X et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    PubMed  CAS  Google Scholar 

  93. Schauenberg P (1966) La Genette vulgaire (Genetta genetta L.), répartition géographique en Europe. Mammalia 30:371–396

    Article  Google Scholar 

  94. Schlawe L (1980) Zur geographischen Verbreitung der Ginsterkatzen, Gattung Genetta G. CUVIER, 1816 (Mammalia, Carnivora, Viverridae). Faun Abh Mus Tierkde Dresden 7:147–161

    Google Scholar 

  95. Schlawe L (1981) Material, Fundorte, Text- und Bildquellen als Grundlagen für eine Artenliste zur Revision der Gattung Genetta G. CUVIER, 1816. Zool Abh Mus Tierkde Dresden 37:85–182

    Google Scholar 

  96. Scozzari R, Cruciani F, Pangrazio A et al (2001) Human Y-chromosome variation in the western Mediterranean area: implications for the peopling of the region. Hum Immunol 62:871–884

    PubMed  CAS  Google Scholar 

  97. Simberloff D (1972) Properties of the rarefaction diversity measurement. Am Nat 106:414–418

    Google Scholar 

  98. Stepien CA, Taylor CD, Dabrowska KA (2002) Genetic variability and phylogeographical patterns of a nonindigenous species invasion: a comparison of exotic vs. native zebra and quagga mussel populations. J Evol Biol 15:314–328

    CAS  Google Scholar 

  99. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed  CAS  Google Scholar 

  100. Tajima F (1993) Simple method for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    PubMed  CAS  Google Scholar 

  101. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  102. Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    PubMed  CAS  Google Scholar 

  103. Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol Ecol 13:789–809

    PubMed  Google Scholar 

  104. Templeton AR (2008) Nested clade analysis: an extensively validated method for strong phylogeographic inference. Mol Ecol 17:1877–1880

    PubMed  Google Scholar 

  105. Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669

    PubMed  CAS  Google Scholar 

  106. Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117:343–351

    PubMed  CAS  Google Scholar 

  107. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  108. Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782

    PubMed  CAS  Google Scholar 

  109. Thomas H (1979) Le rôle de barrière écologique de la ceinture saharo-arabique au Miocène: arguments paléontologiques. Bull Mus Nat Hist Nat 4-è s Sect C 1:127–135

    Google Scholar 

  110. Thomas H, Bernor R, Jaeger J-J (1982) Origines du peuplement mammalien en Afrique du Nord durant le Miocène terminal. Geobios 15:283–297

    Google Scholar 

  111. Tomàs C, Jiménez G, Picornell A et al (2006) Differential maternal and paternal contributions to the genetic pool of Ibiza Island, Balearic Archipelago. Am J Phys Anthropol 129:268–278

    PubMed  Google Scholar 

  112. Tristram HB (1866) Report on the mammals of Palestine. Proc Zool Soc Lond 1866:84–93

    Google Scholar 

  113. Tristram HB (1884) The survey of western Palestine. The fauna and flora of Palestine. The Committee of the Palestine Exploration Fund, London

    Google Scholar 

  114. Ufnagl E (1972) Lybian mammals. The Olander Press, New York

    Google Scholar 

  115. van der Made J, Morales J, Montoya P (2006) Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Pal Pal Pal 238:228–246

    Google Scholar 

  116. Vigne J-D (1992) Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia, since the last Ice Age. Mamm Rev 22:87–96

    Google Scholar 

  117. Vignes J-D (1999) The large “true” Mediterranean islands as a model for the HoIocene human impact on the European vertebrate fauna? Recent data and new reflections. In: Benecke N (ed) The Holocene history of the European vertebrate fauna. Modern aspects of research. Workshop, Berlin, Germany, pp 295–322. 6–9 April 1998

  118. Wenner MW (1980) The Arab/Muslim presence in medieval central Europe. Int J M East Stud 12:59–79

    Google Scholar 

  119. Werdelin L (2003) Mio-Pliocene carnivora from Lothagam, Kenya. In: Leakey MG, Harris JM (eds) Lothagam: the dawn of humanity in Africa. Columbia University Press, New York

    Google Scholar 

  120. Wolsan M, Morlo MO (1997) The status of ‘Plesictiscroizeti, ‘Plesictisgracilis and ‘Lutraminor: synonyms of the early Miocene viverrid Herpestides antiquus (Mammalia, Carnivora). Bull Nat Hist Mus Geol 53:1–9

    Google Scholar 

  121. Yang Z (2002) MCMCcoal. Markov Chain Monte Carlo Coalescent program. Department of Biology, University College, London

    Google Scholar 

  122. Yang Z, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283

    PubMed  CAS  Google Scholar 

  123. Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinfo 4:6

    Google Scholar 

Download references

Acknowledgments

We deeply thank the following people for having contributed to the sampling effort: N. Aït-Ameur, A. Arrizabalaga Blanch, K. Ba, J.J. Bafaluy Zoriguel, O. Berdion, M. Beucher, J.-C. Boisguerin, R. Bouhraoua, M. Boukheroufa, F. Bourguemestre, E. Brandt, J.-M. Cassiède, F. Catzeflis, M. Colyn, G. Coste, C. Crémière, J. Cuisin, F. Cuzin, X. Domingo, G. Dominguez, M.-F. Faure, F. Ferrandon, C. and P. Fournier, I.R. Fraile, A. Galat-Luong, J. Garrigue, A. Gerbaud, M. Gouichiche, L. Granjon, D. Guérineau, C. Gutierez, B. Hamou, E.H. Harley, M. Hubert, A. Kitchener, E. Le Nuz, F. Léger, F. Llimona, P. Lluch, J.V. Lopez Bao, F. Lopez-Giraldez, A. Loureiro, E. Martinez Nevado, L. Matringe, J. Mayné, B. Mellier, J.-D. Méric, A. Olivier, M.C. Otero, J.-P. Paillat, L. Parpal, M. Pelven, S. Peres, A. Petit, L. Picco, J. Placer Lopez, D. Portier, G. Pottier, J.-J. Ranouil, H. Rguibi, A.G.P. de Santayana, J. Seon, P. Sierra, H. Sitek, P.J. Taylor, M. Tranier, G.M. Vacas, J.-P. Vacher, G. Van Laere, P. Vercammen, G. Veron, B. Vilatte, S. de Vries, S. Yepes, J. Zabala, I. Zuberogoitia. The following institutions allowed us to access their tissue banks: Breeding Centre for Endangered Arabian Wildlife, Sharjah (United Arab Emirates); Consorcio de Recuperacio de la Fauna, Illes Baleares (Spain); Instituto da Conservação da Natureza, Porto (Portugal); Museu de Granollers – Ciencies Naturals, Barcelona (Spain); Museo Nacional de Ciencias Naturales, Madrid (Spain); Muséum National d’Histoire Naturelle, Paris (France); Parc de Collserola, Cataluña (Spain). We are grateful to Ana Piriz and the whole staff of Laboratorio de Ecologia Molecular, Estación Biológica de Doñana, for lab work assistance and fruitful discussions. Two anonymous reviewers provided useful comments on the early version of the manuscript. Arnaud Fontanet and Géraldine Veron played a significant role in fund-raising the project. This work was funded by the European Commission 6th PCRDT “EPISARS” (FP6-2003-SSP-2-SARS; no. 51163).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe Gaubert.

Appendix I

Appendix I

Appendix I Detailed list of the samples and sequences used in this study

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaubert, P., Godoy, J.A., del Cerro, I. et al. Early phases of a successful invasion: mitochondrial phylogeography of the common genet (Genetta genetta) within the Mediterranean Basin. Biol Invasions 11, 523–546 (2009). https://doi.org/10.1007/s10530-008-9268-4

Download citation

Keywords

  • Carnivora
  • Historical demography
  • Introduced species
  • Mediterranean
  • MtDNA
  • Phylogeography