Biological Invasions

, Volume 10, Issue 1, pp 19–24 | Cite as

Morella cerifera invasion and nitrogen cycling on a lowland Hawaiian lava flow

  • Erin L. Kurten
  • Carolyn P. Snyder
  • Terri  Iwata
  • Peter M. Vitousek
Original Paper


Invasive plants that fix nitrogen can alter nutrient availability and thereby community dynamics and successional trajectories of native communities they colonize. Morella cerifera (Myricaceae) is a symbiotic nitrogen fixer originally from the southeastern U.S. that is colonizing native-dominated vegetation on a young lava flow near Hilo, Island of Hawai‘i, where it increases total and biologically available soil nitrogen and increases foliar nitrogen concentrations in associated individuals of the native tree Metrosideros polymorpha. This invasion has the potential to alter the few remaining native-dominated lowland forest ecosystems in windward Hawai‘i.


Hawai‘i invasive species Morella Metrosideros polymorpha Myrica Nitrogen cycling Succession Tropical forest 



diameter at breast height


Hydrochloric acid


Potassium chloride





We thank J. Benner, H. Farrington, and R. Ostertag for field assistance and advice in study design, K. Amatangelo and D. Turner for laboratory assistance, and K. Amatangelo and R. Ostertag for helpful discussion. This research was supported by grants from the Andrew Mellon Foundation and the National Science Foundation (DEB 0108492) to Stanford University.


  1. Adler PB, D’Antonio CM, Tunison JT (1998) Understory succession following a dieback of Myrica faya in Hawai‘i Volcanoes National Park. Pacific Science 52(1):69–78Google Scholar
  2. Aplet GH (1990) Alteration of earthworm community biomass by the alien Myrica faya in Hawai‘i. Oecologia 92:414–416CrossRefGoogle Scholar
  3. Aplet GH, Loh RL, Tunison JT, Vitousek PM (1998) Experimental restoration of a closed Faya tree stand. Technical Report 121, Cooperative National Park Resources Study Unit, University of Hawai‘iGoogle Scholar
  4. Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40(2):344–353Google Scholar
  5. Burleigh SH, Dawson JO (1994) Occurrence of Myrica-nodulating Frankia in Hawaiian volcanic soils. Plant and Soil 164(2):283–289CrossRefGoogle Scholar
  6. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Systemat 23:63–87Google Scholar
  7. Dirr MA (1998) Manual of Woody Landscape Plants: Their identification, ornamental characteristics, culture, propagation and uses. Stipes Publishing L.L.C., Champaign, IllinoisGoogle Scholar
  8. Dirr MA (2002) Dirr’s trees and shrubs for warm climates: An illustrated encyclopedia. Timber Press, Portland, OregonGoogle Scholar
  9. Duever MJ, Riopelle LA (1983) Successional sequences and rates on tree islands in the Okefenokee Swamp. Amer Midland Natur 110(1):186–193CrossRefGoogle Scholar
  10. Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10(2):484–496CrossRefGoogle Scholar
  11. Gerrish G, Mueller-Dombois D (1999) Measuring stem growth rates for determining age and cohort analysis of a tropical evergreen tree. Pacific Science 53(4):418–429Google Scholar
  12. Giambelluca TW, Nullet MA, and Schroeder TA (1986) Rainfall Atlas of Hawai‘i. State of Hawai‘i Department of Land and Natural Resources Report R76, Honolulu, Hawai‘iGoogle Scholar
  13. Haddad NM, Haarstad J, Tilman D (2000) The effects of long-term nitrogen loading on grassland insect communities. Oecologia 124(1):73–84CrossRefGoogle Scholar
  14. Hughes RF, Denslow JS (2005) Invasion by a N-2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol Appl 15(5):1615–1628CrossRefGoogle Scholar
  15. Juvik SP, Juvik JO, Paradise TR (eds) (1998) Atlas of Hawai‘i (Third Edition). University of Hawai‘i Press, Honolulu, Hawai‘iGoogle Scholar
  16. Levey DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM (2005) Effects of landscape corridors on seed dispersal by birds. Science 309:146–148PubMedCrossRefGoogle Scholar
  17. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, and Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society Biological Sciences Series B 270(1517):775–781Google Scholar
  18. Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105(3):302–312CrossRefGoogle Scholar
  19. Matson PA (1990) Plant-soil interaction in primary succession at Hawai‘i Volcanos National Park. Oecologia 85(2):241–246CrossRefGoogle Scholar
  20. McClanahan TR, Wolfe RW (1993) Accelerating forest succession in a fragmented landscape: The role of birds and perches. Conserv Biol 7(2):279–288CrossRefGoogle Scholar
  21. Meidell JS, Oppenheimer HL, Bartlett RT (1997) New plant records from Pu’u Kukui Watershed and adjacent areas, Maui. Bishop Mus. Occas. Pap. 49(2):17–19Google Scholar
  22. Mueller-Dombois D, Fosberg FR (1998) Vegetation of the tropical Pacific islands. Springer-Verlag, New York, New YorkGoogle Scholar
  23. Musil CF (1993) Effect of invasive Australian acacias on the regeneration, growth and nutrient chemistry of south African lowland fynbos. J Appl Ecol 30(2):361–372CrossRefGoogle Scholar
  24. Perrings C, Dalmazzone S, Williamson M (2005) The economics of biological invasions. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds.) Invasive alien species: A new synthesis. Scope series, vol. 63. Island Press, Washington, D.C., U.S.A., pp 16–35Google Scholar
  25. Skolmen RG (1960) Plantings on the Forest Reserves of Hawai‘i: 1910–1960. Institute of Pacific Islands Forestry, Pacific Southwest Forest and Range Experiment Station, United States Forest Service, Honolulu, Hawai‘iGoogle Scholar
  26. Stock WD, Wienand KT, Baker AC (1995) Impacts of invading N-2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15N natural abundance values. Oecologia 101(3):375–382CrossRefGoogle Scholar
  27. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zealand J Ecol 21:1–16Google Scholar
  28. Vitousek PM, Walker LR (1989) Biological invasion by Myrica Faya in Hawai‘i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monographs 59(3):247–266CrossRefGoogle Scholar
  29. Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica Faya alters ecosystem development in Hawaii. Science 238(4828):802–804PubMedCrossRefGoogle Scholar
  30. Wagner WL, Herbst DR, Sohmer SH (1999) The manual of the flowering plants of Hawai‘i (revised edition). University of Hawai‘i Press, Honolulu, Hawai‘iGoogle Scholar
  31. Walker LR, Vitousek PM (1991) An invader alters germination and growth of a native dominant tree in Hawai‘i. Ecology 72(4):1449–1455CrossRefGoogle Scholar
  32. Wijnholds AE, Young DR (2000) Interdependence of Myrica cerifera seedlings and the nodule forming actinomycete, Frankia, in a coastal environment. J Coast Res 16(1):139–144Google Scholar
  33. Young DR, Shao G, Porter JH (1995) Spatial and temporal growth dynamics of barrier island shrub thickets. Amer J Bot 82(5):638–645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Erin L. Kurten
    • 1
  • Carolyn P. Snyder
    • 1
  • Terri  Iwata
    • 1
  • Peter M. Vitousek
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations