Biological Invasions

, Volume 8, Issue 2, pp 365–375 | Cite as

Allee Effects, Propagule Pressure and the Probability of Establishment: Risk Analysis for Biological Invasions

  • John M. DrakeEmail author
  • David M. Lodge
Paradigms and Perspectives


Colonization is of longstanding interest in theoretical ecology and biogeography, and in the management of weeds and other invasive species, including insect pests and emerging infectious diseases. Due to accelerating invasion rates and widespread economic costs and environmental damages caused by invasive species, colonization theory has lately become a matter of considerable interest. Here we review the concept of propagule pressure to inquire if colonization theory might provide quantitative tools for risk assessment of biological invasions. By formalizing the concept of propagule pressure in terms of stochastic differential equation models of population growth, we seek a synthesis of invasion biology and theoretical population biology. We focus on two components of propagule pressure that affect the chance of invasion: (1) the number of individuals initially introduced, and (2) the rate of subsequent immigration. We also examine how Allee effects, which are expected to be common in newly introduced populations, may inhibit establishment of introduced propagules. We find that the establishment curve (i.e., the chance of invasion as a function of initial population size), can take a variety of shapes depending on immigration rate, carrying capacity, and the severity of Allee effects. Additionally, Allee effects can cause the stationary distribution of population sizes to be bimodal, which we suggest is a possible explanation for time lags commonly observed between the detection of an introduced population and widespread invasion of the landscape.


Allee effect biological invasion immigration propagule pressure rescue effect risk analysis risk assessment stochastic differential equation stochastic population growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustin, NH, Mugglestone, MA, Buckland, ST 1996An autologistic model for the spatial distribution of wildlifeJournal of Applied Ecology33339347Google Scholar
  2. Allen, LJS 2003An Introduction to Stochastic Processes with Applications to BiologyPearson Education, Inc.Upper Saddle River, NJ400Google Scholar
  3. Bailey, NTJ 1964The Elements of Stochastic Processes with Applications to the Natural SciencesWileyNew York249Google Scholar
  4. Baker, HG 1974The evolution of weedsAnnual Review of Ecology and Systematics5124CrossRefGoogle Scholar
  5. Baker, HG, Stebbins, GL 1965The Genetics of Colonizing SpeciesAcademic PressNew York588Google Scholar
  6. Bartlett, MS 1960Stochastic Population Models in Ecology and EpidemiologyMethuenLondon90Google Scholar
  7. Beissinger, SR, McCullough, DR 2002Population Viability AnalysisUniversity of Chicago PressChicago593Google Scholar
  8. Berggren, A 2001Colonization success in Roesel’s bush-cricket Metrioptera roeseli: the effects of propagule sizeEcology82274280Google Scholar
  9. Boukal, DS, Berec, L 2002Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encountersJournal of Theoretical Biology218375394PubMedCrossRefGoogle Scholar
  10. Brook, B, Burgman, MA, Akçakaya, HR, O’Grady, JJ, Frankham, R 2002Critiques of PVA ask the wrong questions. Throwing the heuristic baby out with the numerical bathwaterConservation Biology16262263CrossRefGoogle Scholar
  11. Brown, JH, Kodric-Brown, A 1977Turnover rates in insular biogeography: effect of immigration on extinctionEcology58445449Google Scholar
  12. Chapman, JW, Miller, TW, Coan, EV 2003Live seafood species as recipes for invasionConservation Biology1713861395Google Scholar
  13. Clark, JS 1998Why trees migrate so fast: confronting theory with dispersal: biology and the paleorecordAmerican Naturalist152204224CrossRefGoogle Scholar
  14. Colautti, RI, Grigorovich IA and MacIsaac HJ (in press) Propagule pressure: a null model for biological invasions. Biological Invasions 8(4).Google Scholar
  15. Cook, WC 1931Notes on predicting the probable future distribution of introduced insectsEcology12245147Google Scholar
  16. Courchamp, F, Clutton-brock, T, Grenfell, B 1999Inverse density-dependence and the Allee effectTrends in Ecology and Evolution14405410PubMedCrossRefGoogle Scholar
  17. Dennis, B 1989Allee effects: population growth, critical density, and the chance of extinctionNatural Resources Modelling3481538Google Scholar
  18. Dennis, B 2002Allee effects in stochastic populationsOikos96389401CrossRefGoogle Scholar
  19. Dennis, B, Munholland, PL, Scott, JM 1991Estimation of growth and extinction parameters for endangered speciesEcological Monographs61115143Google Scholar
  20. Drake, JM 2004Allee effects and the risk of biological invasionRisk Analysis24795802PubMedCrossRefGoogle Scholar
  21. Drake, JM 2003The paradox of the parasites: implications for biological invasionBiology Letters270S133S135CrossRefGoogle Scholar
  22. Drake, JM, Bossenbroek, J 2004The potential distribution of zebra mussels in the United StatesBioScience54931941Google Scholar
  23. Duncan, RP, Blackburn, TM, Veltman, CJ 1999Determinants of geographical range sizes: a test using introduced New Zealand birdsJournal of Animal Ecology68963975CrossRefGoogle Scholar
  24. Elton, CS 2000The Ecology of Invasions by Animals and PlantsUniversity of Chicago PressChicago196ReprintGoogle Scholar
  25. Environmental Protection Agency (1998) Guidelines for Ecological Risk Assessment. Washington, DC: EPA/630/R095/002FGoogle Scholar
  26. Feller, W 1939Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeits theoretischen BehandlungActa Biotheoretica5140CrossRefGoogle Scholar
  27. Fieberg, J, Ellner, SP 2000When is it meaningful to estimate an extinction probability?Ecology8120402047Google Scholar
  28. Gardiner, CW 1985Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences2SpringerNew York442Google Scholar
  29. Gjullin, CM 1931Probable distribution of the Mediterranean fruit fly (Ceratitis Capitata Weid.) in the United StatesEcology12248258Google Scholar
  30. Goel, NS, Richter-Dyn, N 1974Stochastic Models in BiologyAcademic PressNew YorkGoogle Scholar
  31. Gollasch, S, Leppäkoski, E 1999Initial risk assessment of alien species in Nordic coastal watersNordic Council of MinistersCopenhangen124Google Scholar
  32. Grevstad, FS 1999aExperimental invasions using biological control introductions: the influence of release size on the chance of population establishmentBiological Invasions1313232CrossRefGoogle Scholar
  33. Grevstad, F 1999bFactors influencing the chance of population establishment: implications for release strategies in biocontrolEcological Applications914391447Google Scholar
  34. Groves, RH, Panetta, FR, Virtue, JG 2001Weed Risk AssessmentCSIRO PublishingCollingwood, Victoria, Australia256Google Scholar
  35. Groom, M 1998Allee effects limit population viability of an annual plantAmerican Naturalist151487496CrossRefGoogle Scholar
  36. Haccou, P, Iwasa, Y 1996Establishment probability in fluctuating environments: a branching process modelTheoretical Population Biology50254280PubMedCrossRefGoogle Scholar
  37. Hayes, K 1997A Review of Ecological Risk Assessment MethodologiesCSIRO Marine Research Technical Report Number 13Collingwood, Victoria, Australia113Google Scholar
  38. Henson, SM, King, AA, Costantino, RF, Cushing, JM, Dennis, B, Desharnais, RA 2003Explaining and predicting patterns in stochastic population systemsProceedings of the Royal Society of LondonB 27015491553Google Scholar
  39. Kammen, DM, Hassenzahl, DM 1999Should We Risk It?Princeton University PressPrinceton424Google Scholar
  40. Kendall, DG 1949Stochastic processes and population growthJournal of the Royal Statistical SocietyB 11230264Google Scholar
  41. Kolar, CS, Lodge, DM 2001Progress in invasion biology: predicting invadersTrends in Ecology & Evolution16199204Google Scholar
  42. Kolar, CS, Lodge, DM 2002Ecological predictions and risk assessments for alien speciesScience29812331236PubMedCrossRefGoogle Scholar
  43. Lande, R, Orzack, SH 1988Extinction dynamics of age-structured populations in a fluctuating environmentProceedings of the National Academy of Sciences USA8574187421Google Scholar
  44. Lande, R, Engen, S, Sæther, BE 2003Stochastic Population Dynamics in Ecology and ConservationOxford University PressOxford, UK224Google Scholar
  45. Levine, JM, D’Antonio, CM 2003Forecasting biological invasions with increasing international tradeConservation Biology17322326CrossRefGoogle Scholar
  46. Lewis MA and Kareiva P (1993) Allee dynamics and the spread of invading organisms Theoretical Population Biology 43: 141–158Google Scholar
  47. Lewontin, RC, Cohen, D 1969On population growth in a randomly varying environmentProceedings of the National Academy of Sciences USA6210561060Google Scholar
  48. Liermann, M, Hilborn, R 1997Depensation in fish stocks: a hierarchic Bayesian meta-analysisCanadian Journal of Fisheries and Aquatic Sciences5419761984CrossRefGoogle Scholar
  49. Ludwig, D 1996The distribution of population survival timesAmerican Naturalist147506526CrossRefGoogle Scholar
  50. Lusk, JJ, Guthery, FS, DeMaso, SJ 2002A neural network model for predicting Northern Bobwhite abundance in the Rolling Red Plains of OklahomaScott,  eds. Predicting Species Occurrences: Issues of Accuracy and ScaleIsland PressWashington, DC, USA345356Google Scholar
  51. MacArthur, RH, Wilson, EO 1967The Theory of Island BiogeographyPrinceton University PressPrinceton, NJ224Google Scholar
  52. Mack, RN, Simberloff, D, Lonsdale, WM, Evans, H, Clout, M, Bazzaz, FA 2000Biotic invasions: causes, epidemiology, global consequences, and controlEcological Applications10689710Google Scholar
  53. Mangel, M, Tier, C 1993A simple direct method for finding persistence times of populations and application to conservation problemsProceedings of the National Academy of Sciences USA9010831086Google Scholar
  54. Matis, JH, Kiffe, TR 2000Stochastic Population Models: A Compartmental PerspectiveSpringer-VerlagNew York202Google Scholar
  55. McCarthy, MA 1997The Allee effect, finding mates and theoretical modelsEcological Modelling10399102CrossRefGoogle Scholar
  56. McCarthy, MA, Andelman, SJ, Possingham, HP 2003Reliability of relative predictions in population viability analysisConservation Biology17982989CrossRefGoogle Scholar
  57. Morris, WF, Doak, DF 2002Quantitative Conservation Biology: Theory and Practice of Population Viability AnalysisSinauerSunderland, MA480Google Scholar
  58. National Invasive Species Council (2001) Meeting the Invasive Species Challenge:c National Invasive Species Management Plan, 80 ppGoogle Scholar
  59. National Research Council1996Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships’ Ballast WaterNational Academy PressWashington, DC141Google Scholar
  60. National Research Council2002Predicting Invasions of Nonindigenous Plants and Plant PestsNational Academy PressWashington, DC194Google Scholar
  61. Olden, JD, Poff, NL 2003Toward a mechanistic understanding and prediction of biotic homogenizationAmerican Naturalist162442460PubMedGoogle Scholar
  62. Peterson, AT, Vieglais, DA 2001Predicting species invasions using ecological niche modelingBioScience51363371Google Scholar
  63. Rand, DA, Wilson, HB 1991Chaotic stochasticity – a ubiquitous source of unpredictability in epidemicsProceedings of the Royal Society of London Series B246179184PubMedGoogle Scholar
  64. Reichard, S 2001The search for patterns that enable prediction of invasionGroves, RHPanetta, FDVirtue, JG eds. Weed Risk AssessmentCISRO PublishingCollingwood, Victoria, Australia1019Google Scholar
  65. Renshaw, E 1991Modelling Biological Populations in Space and TimeCambridge University PressCambridge422Google Scholar
  66. Richter-Dyn, N, Goel, NS 1972On the extinction of a colonizing speciesTheoretical Population Biology3406433PubMedGoogle Scholar
  67. Shaffer, ML 1981Minimum population sizes for species conservationBioScience31131134Google Scholar
  68. Shigesada, N, Kawasaki, K 1997Biological Invasions: Theory and PracticeOxford University PressOxford, UK205Google Scholar
  69. Simberloff, D, Alexander, M 1998Assessing risks from biological introductions (excluding GMOs) for ecological systemsCalow, P eds. Handbook of Environmental Risk Assessment and ManagementOxford University PressOxford147176Google Scholar
  70. Soulé, ME 1987Viable Populations for ConservationCambridge University PressCambridge206Google Scholar
  71. Sunstein, CR 2002Risk and ReasonCambridge University PressCambridge352Google Scholar
  72. Sutherst, RW 2003Prediction of species’ geographical rangesJournal of Biogeography3019441945CrossRefGoogle Scholar
  73. Tier, C, Hanson, FB 1981Persistence of density dependent stochastic populationsMathematical Biosciences5389117CrossRefGoogle Scholar
  74. Tuljapurkar, S 1990Population Dynamics in Variable EnvironmentsSpringer-VerlagNew York154Google Scholar
  75. Veit, RR, Lewis, MA 1996Dispersal, population growth and the Allee Effect: dynamics of the House Finch invasion of eastern North AmericaAmerican Naturalist148255274CrossRefGoogle Scholar
  76. Veltman, CJ, Nee, S, Crawley, MJ 1996Correlates of introduction success in exotic New Zealand birdsAmerican Naturalist147542557CrossRefGoogle Scholar
  77. Williamson, M 1996Biological InvasionsChapman and HallLondon244Google Scholar
  78. Wilson, EO 2000On the future of conservation biologyConservation Biology1413CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.National Center for Ecological Analysis and SynthesisSanta BarbaraUSA

Personalised recommendations