Skip to main content
Log in

Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To increase the thermal stability of sucrose isomerase from Erwinia rhapontici NX-5, we designed a comprehensive strategy that combines different thermostabilizing elements.

Results

We identified 19 high B value amino acid residues for site-directed mutagenesis. An in silico evaluation of the influence of post-translational modifications on the thermostability was also carried out. The sucrose isomerase variants were expressed in Pichia pastoris X33. Thus, for the first time, we report the expression and characterization of glycosylated sucrose isomerases. The designed mutants K174Q, L202E and K174Q/L202E, showed an increase in their optimal temperature of 5 °C, while their half-lives increased 2.21, 1.73 and 2.89 times, respectively. The mutants showed an increase in activity of 20.3% up to 25.3%. The Km values for the K174Q, L202E, and K174Q/L202E mutants decreased by 5.1%, 7.9%, and 9.4%, respectively; furthermore, the catalytic efficiency increased by up to 16%.

Conclusions

With the comprehensive strategy followed, we successfully obtain engineered mutants more suitable for industrial applications than their counterparts: native (this research) and wild-type from E. rhapontici NX-5, without compromising the catalytic activity of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adney WS, Jeoh T, Beckham GT, Chou Y-C, Baker JO, Michener W, Himmel ME (2009) Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose 16(4):699–709

    Article  CAS  Google Scholar 

  • Aroonnual A, Nihira T, Seki T, Panbangred WJE, Technology M (2007) Role of several key residues in the catalytic activity of sucrose isomerase from Klebsiella pneumoniae NK33–98–8. Enzyme Microb Technol 40(5):1221–1227

    Article  CAS  Google Scholar 

  • Ban X, Wu J, Kaustubh B, Lahiri P, Dhoble AS, Gu Z, Tong Y (2020) Additional salt bridges improve the thermostability of 1, 4-α-glucan branching enzyme. Food Chem 316:126348

    Article  CAS  PubMed  Google Scholar 

  • Barrero JJ, Casler JC, Valero F, Ferrer P, Glick BS (2018) An improved secretion signal enhances the secretion of model proteins from Pichia pastoris. Microb Cell Fact 17(1):1–13

    Article  Google Scholar 

  • Bashirova A, Pramanik S, Volkov P, Rozhkova A, Nemashkalov V, Zorov I, Davari MD (2019) Disulfide bond engineering of an endoglucanase from Penicillium verruculosum to improve its thermostability. Int J Mol Sci 20(7):1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit I, Asther M, Sulzenbacher G, Record E, Marmuse L, Parsiegla G, Bignon C (2006) Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A. FEBS Lett 580(25):5815–5821

    Article  CAS  PubMed  Google Scholar 

  • Bi J, Chen S, Zhao X, Nie Y, Xu YJ (2020) Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Appl Microbiol Biotechnol 104(17):7551–7562

    Article  CAS  PubMed  Google Scholar 

  • Bian F, Yue S, Peng Z, Zhang X, Chen G, Yu J, Bi YJPO (2015) A comprehensive alanine-scanning mutagenesis study reveals roles for salt bridges in the structure and activity of pseudomonas aeruginosa elastase. PLoS ONE 10(3):e0121108

    Article  PubMed  PubMed Central  Google Scholar 

  • Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42(15):6534–6565

    Article  CAS  PubMed  Google Scholar 

  • BöRnke F, Hajirezaei M, Sonnewald UJJO, B. (2001) Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici. J Bacteriol 183(8):2425–2430

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha J, Jung J, Park S, Cho M, Seo D, Ha S, Park CJ (2009) Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp. FMB-1. J Appl Microbiol 107(4):1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty D, Khan MF, Patra SJE (2017) Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 21(3):419–444

    Article  CAS  PubMed  Google Scholar 

  • Chapman J, Ismail AE, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8(6): 238. Retrieved from https://www.mdpi.com/2073-4344/8/6/238

  • Chicco A, D’alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 133(1):127–133

    Article  CAS  PubMed  Google Scholar 

  • Cho M-H, Park S-E, Lim JK, Kim J-S, Kim JH, Kwon DY, Park C-S (2007) Conversion of sucrose into isomaltulose by Enterobacter sp. FMB1, an isomaltulose-producing microorganism isolated from traditional Korean food. Biotech Lett 29:453–458

    Article  CAS  Google Scholar 

  • Choi J-M, Han S-S, Kim H-SJB (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33(7):1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Cicerone M, Giri J, Shaked ZE, Roberts CJ (2015) Protein stability-an underappreciated but critical need for drug delivery systems. Adv Drug Deliv Rev 93:1

    Article  CAS  PubMed  Google Scholar 

  • Colley KJ, Varki A, Kinoshita T (2015) Cellular organization of glycosylation, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Cregg JM, Russell KA (1998) Transformation. Pichia protocols. Springer, Berlin, pp 27–39

    Chapter  Google Scholar 

  • De Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(2):W362–W365

    Article  PubMed  PubMed Central  Google Scholar 

  • De Groot E, Schweitzer L, Theis S (2020) Efficacy of isomaltulose compared to sucrose in modulating endothelial function in overweight adults. Nutrients 12(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey P, Roy A (2018) Molecular structure and catalytic mechanism of fungal family G acidophilic xylanases. 3 Biotech 8(2):1–13

    Article  Google Scholar 

  • Dotsenko AS, Gusakov AV, Volkov PV, Rozhkova AM, Sinitsyn AP (2016) N-linked glycosylation of recombinant cellobiohydrolase I (Cel7A) from Penicillium verruculosum and its effect on the enzyme activity. Biotechnol Bioeng 113(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Dotsenko AS, Rozhkova AM, Zorov IN, Sinitsyn APJB, T. (2020) Protein surface engineering of endoglucanase Penicillium verruculosum for improvement in thermostability and stability in the presence of 1-butyl-3-methylimidazolium chloride ionic liquid. Bioresour Technol 296:122370

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Cheng S, Ai Y, Wu JJPO (2016) Enhancing the thermostability of serratia plymuthica sucrose isomerase using B-factor-directed mutagenesis. PLoS ONE 11(2):e0149208

    Article  PubMed  PubMed Central  Google Scholar 

  • Eijsink VG, Gåseidnes S, Borchert TV, Van Den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22(1–3):21–30

    Article  CAS  PubMed  Google Scholar 

  • Fágáin CÓ (1995) Understanding and increasing protein stability. Biochim Biophys Acta Protein Struct Mol Enzymol 1252(1):1–14

    Article  Google Scholar 

  • Gong X-M, Qin Z, Li F-L, Zeng B-B, Zheng G-W, Xu J-HJ (2018) Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor. ACS Catal 9(1):147–153

    Article  CAS  Google Scholar 

  • Han M, Wang W, Jiang G, Wang X, Liu X, Cao H, Yu X (2014a) Enhanced expression of recombinant elastase in Pichia pastoris through addition of N-glycosylation sites to the propeptide. Biotech Lett 36(12):2467–2471

    Article  CAS  Google Scholar 

  • Han M, Wang X, Ding H, Jin M, Yu L, Wang J, Yu X (2014b) The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb Technol 54:32–37

    Article  CAS  PubMed  Google Scholar 

  • Han N, Ma Y, Mu Y, Tang X, Li J, Huang ZJE, Technology M (2019) Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment. Enzyme Microbial Technol 131:109422

    Article  CAS  Google Scholar 

  • Han C, Wang Q, Sun Y, Yang R, Liu M, Wang S, Li DJBF (2020) Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. Biotechnol Biofuels 13(1):1–11

    Article  Google Scholar 

  • He J, Tang F, Chen D, Yu B, Luo Y, Zheng P, Yu FJPO (2019) Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS ONE 14(1):e0210548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73(1):1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, Gonzalez-De-Leon D (1998) CIMMYT applied molecular genetics laboratory. In: MexicoDF: CIMMYT

  • Hu X, Yuan X, He N, Zhuang TZ, Wu P, Zhang G (2019) Expression of Bacillus licheniformis α-amylase in Pichia pastoris without antibiotics-resistant gene and effects of glycosylation on the enzymic thermostability. Biotech 9(11):1–9

    Google Scholar 

  • Hua L, Gao X, Yang X, Wan D, He C, Cao J, Song H (2014) Highly efficient production of peptides: N-glycosidase F for N-glycomics analysis. Protein Expr Purif 97:17–22

    Article  CAS  PubMed  Google Scholar 

  • Huang HL, Su YJ (1998) Conversion of sucrose to isomaltulose by Klebsiella planticola CCRC 19112. J Ind Microbiol Biotechnol 21(1–2):22–27

    Article  CAS  Google Scholar 

  • Huntemann M, Lu M, Nolan M, Lapidus A, Lucas S, Hammon N, Han C (2011) Complete genome sequence of the thermophilic sulfur-reducer Hippea maritima type strain (MH2T). Standards Genom Sci 4(3):303–311

    Article  CAS  Google Scholar 

  • Jiang T, Chen L, Jia S, Chen L, Ma YJDS (2008) High-level expression and production of human lactoferrin in Pichia pastoris. Dairy Sci Technol 88(2):173–181

    Article  CAS  Google Scholar 

  • Jung J-H, Kim M-J, Jeong W-S, Seo D-H, Ha S-J, Kim YW, Park C-S (2017) Characterization of divergent pseudo-sucrose isomerase from Azotobacter vinelandii: deciphering the absence of sucrose isomerase activity. Biochem Biophys Res Commun 483(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Katla S, Yoganand K, Hingane S, Kumar CR, Anand B, Sivaprakasam S (2019) Novel glycosylated human interferon alpha 2b expressed in glycoengineered Pichia pastoris and its biological activity: N-linked glycoengineering approach. Enzyme Microb Technol 128:49–58

    Article  CAS  PubMed  Google Scholar 

  • Kawaguti (2007) Palatinose production by free and Ca-alginate gel immobilized cells of Erwinia sp. Biochem Eng J 36(3):202–208

    Article  CAS  Google Scholar 

  • Kawaguti HY, Harumi SH (2010) Effect of concentration and substrate flow rate on isomaltulose production from sucrose by Erwinia sp. cells immobilized in calcium-alginate using packed bed reactor. Appl Biochem Biotechnol 162:89–102

    Article  CAS  PubMed  Google Scholar 

  • Kawaguti HY, Celestino ÉM, Moraes AL, Yim DK, Yamamoto LK, Sato HH (2010) Characterization of a glucosyltransferase from Erwinia sp. D12 and the conversion of sucrose into isomaltulose by immobilized cells. Biochem Eng J 48(2):211–217

    Article  CAS  Google Scholar 

  • Kazlauskas RJCSR (2018) Engineering more stable proteins. Chem Soc Rev 47(24):9026–9045

    Article  CAS  PubMed  Google Scholar 

  • Khan MF, Kundu D, Hazra C, Patra SJIJ (2019) A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Int J Biol Macromol 136:66–82

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UKJN (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Kim JH, Kim SY, Lee JK (2008) Isomaltose production by modification of the fructose-binding site on the basis of the predicted structure of sucrose isomerase from “Protaminobacter rubrum.” Appl Environ Microbiol 74(16):5183–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G-Y, Jung J-H, Seo D-H, Hansin J, Ha S-J, Cha J, Park C-S (2011) Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp FMB-1 on Saccharomyces cerevisiae. Bioresour Technol 102(19):9179–9184

    Article  CAS  PubMed  Google Scholar 

  • Li S, Cai H, Qing Y, Ren B, Xu H, Zhu H (2011) Cloning and characterization of a sucrose isomerase from Erwinia rhapontici NX-5 for isomaltulose hyperproduction. Appl Biochem Biotechnol 163(1):52–63

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang H, Cheng H, Deng Z (2017) Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. J Funct Foods 32:208–217

    Article  CAS  Google Scholar 

  • Li Q, Jiang T, Liu R, Feng X, Li C (2019) Tuning the pH profile of β-glucuronidase by rational site-directed mutagenesis for efficient transformation of glycyrrhizin. Appl Microbiol Biotechnol 103(12):4813–4823

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yu S, Zhao W (2021) A novel sucrose isomerase producing isomaltulose from Raoultella terrigena. Appl Sci 11(12):5521

    Article  CAS  Google Scholar 

  • Masakari Y, Hara C, Araki Y, Gomi K, Ito KJE, Technology M (2020) Improvement in the thermal stability of mucor Prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Enzyme Microbial Technol 132:109387

    Article  CAS  Google Scholar 

  • Miyata Y, Sugitani T, Tsuyuki K-I, Ebashi T, Nakajima Y (1992) Isolation and characterization of Pseudomonas mesoacidophila producing trehalulose. Biosci Biotechnol Biochem 56(10):1680–1681

    Article  CAS  Google Scholar 

  • Mu W, Li W, Wang X, Zhang T, Jiang B (2014) Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Appl Microbiol Biotechnol 98(15):6569–6582

    Article  CAS  PubMed  Google Scholar 

  • Nagai-Miyata Y, Tsuyuki K-I, Sugitani T, Ebashi T, Nakajima Y (1993) Isolation and characterization of a trehalulose-producing strain of Agrobacterium. Biosci Biotechnol Biochem 57(12):2049–2053

    Article  CAS  Google Scholar 

  • Nielsen JE, Borchert TV (2000) Protein engineering of bacterial α-amylases. Biochim Biophys Acta Protein Struct Mol Enzymol 1543(2):253–274

    Article  CAS  Google Scholar 

  • Pack SP, Yoo YJ (2004) Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J Biotechnol 111(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Pagliassotti MJ, Kang J, Thresher JS, Sung CK, Bizeau ME (2002) Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am J Physiol Endocrinol Metab 282(1):E170–E176

    Article  CAS  PubMed  Google Scholar 

  • Pang B, Zhou L, Cui W, Liu Z, Zhou Z (2020) Improvement of the thermostability and activity of pullulanase from anoxybacillus sp. WB42. Appl Biochem Biotechnol 191(3):942–954

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Murthy M (2000) Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng 13(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Pauling L (1960) The nature of the chemical bond, vol 260. Cornell University Press, Ithaca

    Google Scholar 

  • Petrescu A-J, Milac A-L, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2):103–114

    Article  CAS  PubMed  Google Scholar 

  • Qiao Z, Xu M, Shao M, Zhao Y, Long M, Yang T, Rao ZJ (2020) Engineered disulfide bonds improve thermostability and activity of L-isoleucine hydroxylase for efficient 4-HIL production in Bacillus subtilis. Eng Life Sci 168:7–16

    Article  Google Scholar 

  • Querol E, Perez-Pons JA, Mozo-Villarias AJPE (1996) Analysis of protein conformational characteristics related to thermostability. Protein Eng Des Select 9(3):265–271

    Article  CAS  Google Scholar 

  • Ravaud S, Robert X, Watzlawick H, Haser R, Mattes R, Aghajari NJFL (2009) Structural determinants of product specificity of sucrose isomerases. FEBS Lett 583(12):1964–1968

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Carballeira JD, Vogel AJ (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem 118(46):7909–7915

    Article  Google Scholar 

  • Ren B, Li S, Xu H, Feng X-H, Cai H, Ye QJB, Engineering B (2011) Purification and characterization of a highly selective sucrose isomerase from Erwinia rhapontici NX-5. Bioprocess Biosyst Eng 34(5):629–637

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Luo H, Huang H, Hakulinen N, Wang Y, Wang Y, Yao B (2020) Improving the catalytic performance of Proteinase K from Parengyodontium album for use in feather degradation. Int J Biol Macromol 154:1586–1595

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Arraez S, Ferrer C, Capella JV, Ortolá MD, Castelló ML (2017) Development of lemon marmalade formulated with new sweeteners (isomaltulose and tagatose): effect on antioxidant, rheological and optical properties. J Food Process Eng 40(2):e12371

    Article  Google Scholar 

  • Salvucci MEJCB, Biochemistry PPB, Biology M (2003) Distinct sucrose isomerases catalyze trehalulose synthesis in whiteflies Bemisia Argentifolii, and Erwinia Rhapontici. Comparat Biochem Physiol Part B Biochem Mol Biol 135(2):385–395

    Article  Google Scholar 

  • Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci 105(24):8256–8261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Wu D, Xu Y, Yu X (2022) Engineering the optimum pH of β-galactosidase from Aspergillus oryzae for efficient hydrolysis of lactose. J Dairy Sci 105(6):4772–4782

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Bajaj BKJC (2015) Medium optimization for enhanced production of protease with industrially desirable attributes from Bacillus subtilis K-1. Chem Eng Commun 202(8):1051–1060

    Article  CAS  Google Scholar 

  • Sokołowska E, Sadowska A, Sawicka D, Kotulska-Bąblińska I, Car H (2022) A head-to-head comparison review of biological and toxicological studies of isomaltulose, d-tagatose, and trehalose on glycemic control. Crit Rev Food Sci Nutr 62(21):5679–5704

    Article  PubMed  Google Scholar 

  • Stothard PJB (2000) The sequence manipulation suite: javascript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6):1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng C, Jiang Y, Xu Y, Li Q, Li X, Fan G, Ma RJIJ, O. B. M. (2019) Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Int J Biol Macromol 128:354–362

    Article  CAS  PubMed  Google Scholar 

  • Tompa DR, Gromiha MM, Saraboji KJJO (2016) Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins. J Mol Gr Model 64:85–93

    Article  CAS  Google Scholar 

  • Tsuyuki KI, Sugitani T, Miyata Y, Ebashi T, Nakajima Y (1992) Isolation and characterization of isomaltulose-and trehalulose-producing bacteria from Thailand soil. J Gen Appl Microbiol 38(5):483–490

    Article  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson ENJM (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Fact 6(1):9

    Article  Google Scholar 

  • Véronèse T, Perlot P (1998) Proposition for the biochemical mechanism occurring in the sucrose isomerase active site. FEBS Lett 441(3):348–352

    Article  PubMed  Google Scholar 

  • Véronèse T, Perlot P (1999) Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthica ATCC 15928. Microbial Technol 24(5–6):263–269

    Article  Google Scholar 

  • Vicente AI, Viña-Gonzalez J, Mateljak I, Monza E, Lucas F, Guallar V, Alcalde MJ (2020) Enhancing thermostability by modifying flexible surface loops in an evolved high-redox potential laccase. AIChE J 66(3):e16747

    Article  CAS  Google Scholar 

  • Wang R, Wang S, Xu Y, Yu XJIJ (2020) Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations. Int J Biol Macromol 160:1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Warren GL, Petsko GA (1995) Composition analysis of α-helices in thermophilic organisms. Protein Eng Des Sel 8(9):905–913

    Article  CAS  Google Scholar 

  • Wu L, Birch RGJA, Microbiology E (2005) Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene. Appl Environ Microbiol 71(3):1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UTJ (2020) Biocatalysis: enzymatic synthesis for industrial applications

  • Wylie-Rosett J, Segal-Isaacson C, Segal-Isaacson A (2004) Carbohydrates and increases in obesity: does the type of carbohydrate make a difference? Obes Res 12(S11):124S-129S

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Li S, Li J, Li Y, Feng X, Wang R, Zhou JJPO (2013) The structural basis of erwinia rhapontici isomaltulose synthase. PLoS ONE 8(9):e74788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Xue Y-P, Zou S-P, Zheng Y-GJB (2020) Enzyme engineering strategies to confer thermostability. Biofuels Biochem 2:67–89

    Article  Google Scholar 

  • Yang A-S, Honig B (1993) On the pH dependence of protein stability. J Mol Biol 231(2):459–474

    Article  CAS  PubMed  Google Scholar 

  • You S, Xie C, Ma R, Huang H-Q, Herman RA, Su X-Y, Wang JJBF (2019) Improvement in catalytic activity and thermostability of a GH10 xylanase and its synergistic degradation of biomass with cellulase. Biotechnol Biofuels 12(1):1–15

    Article  Google Scholar 

  • Yuan Z, Zhao J, Wang Z-XJP (2003) Flexibility analysis of enzyme active sites by crystallographic temperature factors. Protein Eng 16(2):109–114

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Zhu P, Liang J, Xu Z, Feng X, Liu Y, Li S (2020) Economical production of isomaltulose from agricultural residues in a system with sucrose isomerase displayed on Bacillus subtilis spores. Bioprocess Biosyst Eng 43(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Li X, Zhang L-H (2002) Isomaltulose synthase from Klebsiella sp. strain LX3: gene cloning and characterization and engineering of thermostability. Appl Environ Microbiol 68(6):2676–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Li N, Lok S-M, Zhang L-H, Swaminathan K (2003) Isomaltulose synthase (PalI) of Klebsiella sp. LX3 crystal structure and implication of mechanism. J Biol Chem 278(37):35428–35434

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang Z-P, Sheng J, Zheng Y, Ji X-F, Zhou H-X, Chi Z-M (2018) High and efficient isomaltulose production using an engineered Yarrowia lipolytica strain. Biores Technol 265:577–580

    Article  CAS  Google Scholar 

  • Zhang P, Wang Z-P, Liu S, Wang Y-L, Zhang Z-F, Liu X-M, Yuan X-L (2019) Overexpression of secreted sucrose isomerase in Yarrowia lipolytica and its application in isomaltulose production after immobilization. Int J Biol Macromol 121:97–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cheng F, Jia D-X, Gu Y-H, Liu Z-Q, Zheng Y-G (2021) Characterization of a recombinant sucrose isomerase and its application to enzymatic production of isomaltulose. Biotech Lett 43:261–269

    Article  CAS  Google Scholar 

  • Zheng F, Vermaas JV, Zheng J, Wang Y, Tu T, Wang X, Microbiology E (2019) Activity and thermostability of GH5 endoglucanase chimeras from mesophilic and thermophilic parents. Appl Environ Microbiol 85(5):e02079-e12018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y-Z, Zhou Y, Deng G, Guo R, Chen D-F, Spectroscopy B (2020) A combination of FTIR and DFT to study the microscopic structure and hydrogen-bonding interaction properties of the [BMIM][BF4] and water. Spectrochim Acta Part A Mol Biomol Spectrosc 226:117624

    Article  CAS  Google Scholar 

  • Zou S, Huang S, Kaleem I, Li C (2013) N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris. J Biotechnol 164(1):75–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AJSP thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the Ph.D. studies grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Rascón-Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardiña-Peña, A.J., Ballinas-Casarrubias, L., Siqueiros-Cendón, T.S. et al. Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy. Biotechnol Lett 45, 885–904 (2023). https://doi.org/10.1007/s10529-023-03388-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-023-03388-6

Keywords

Navigation