Skip to main content

Advertisement

Log in

Metabolic engineering of Escherichia coli for the production of (R)-α-lipoic acid

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To increase the production of (R)-α-lipoic acid directly from octanoic acid using engineered Escherichia coli with the regeneration of S-adenosylmethionine.

Results

The biosynthesis of (R)-α-lipoic acid (LA) in E. coli BL21(DE3) is improved by co-expression of lipoate-protein ligase A (LplA) from E. coli MG1655 and lipoate synthase (LipA) from Vibrio vulnificus. The engineered strain produces 20.99 µg l−1 of LA in shake flask cultures. The titers of LA are increased to 169.28 µg l−1 after the optimization of the medium components and fermentation conditions. We find that the [4Fe-4S] cluster is important for the activity of LipA and co-expression of iscSUA promotes the regeneration of the [4Fe-4S] cluster and leads to the highest LA titer of 589.30 µg l−1.

Conclusion

The method described here can be widely applied for the biosynthesis of (R)-α-lipoic acid and other metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amann E, Ochs B, Abel K-J (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69(2):301–315. https://doi.org/10.1016/0378-1119(88)90440-4

    Article  CAS  Google Scholar 

  • Bald E, Sypniewski S, Drzewoski J, Stepien M (1996) Application of 2-halopyridinium salts as ultraviolet derivatization reagents and solid-phase extraction for determination of captopril in human plasma by high-performance liquid chromatography. J Chromatogr B 681:283–289

    Article  CAS  Google Scholar 

  • Baur A, Harrer T, Peukert M, Jahn G, Kalden JR, Fleckenstein B (1991) Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication. Klin Wochenschr 69(15):722–724

    Article  CAS  Google Scholar 

  • Billgren ES, Cicchillo RM, Nesbitt NM, Booker SJ (2010) Lipoic acid biosynthesis and enzymology. The Pennsylvania State University, University Park, PA, USA

    Book  Google Scholar 

  • Bingham PM, Zachar Z (2002–08–08) Lipoic acid derivatives and their use in treatment of disease. US Patent 6951887,

  • Brookes MH, Golding BT, Howes DA, Hutson AT (1983) Proof that the absolute-configuration of natural alpha-lipoic acid is R by the synthesis of its enantiomer [(S)-alpha-lipoic acid] from (S)-malic acid. J Chem Soc Chem Commun 19:1051–1053

    Article  Google Scholar 

  • Brookes MH, Golding BT, Hudson AT (1988) Syntheses of α-(R)- and α-(S)-lipoic acid from (S)-malic acid. J Chem Soc Perkin Trans 1 1:9–12

    Article  Google Scholar 

  • Chen B, Foo JL, Ling H, Chang MW (2020) Mechanism-driven metabolic engineering for bio-based production of free R-lipoic acid in saccharomyces cerevisiae mitochondria. Front Bioeng Biotechnol 8:965. https://doi.org/10.3389/fbioe.2020.00965

    Article  Google Scholar 

  • de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3(2):97–106

    Article  Google Scholar 

  • Dong G, Cao L, Ryde U (2018) Insight into the reaction mechanism of lipoyl synthase: a QM/MM study. J Biol Inorg Chem 23(2):221–229. https://doi.org/10.1007/s00775-017-1522-8

    Article  CAS  Google Scholar 

  • Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MAG (2017) Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synth Biol 6(4):710–720. https://doi.org/10.1021/acssynbio.6b00350

    Article  CAS  Google Scholar 

  • Farshdari F, Ahmadzadeh M, Jahandar H, Mohit E (2019) Enhanced solubility of anti-HER2 scFv using bacterial pelb leader sequence. Iran J Pharmaceutical Sci 15(1):1–16. https://doi.org/10.22034/ijps.2018.91824.1472

    Article  Google Scholar 

  • Friehs K (2004) New trends and developments in biochemical engineering plasmid copy number and plasmid stability. Springer, Berlin

    Google Scholar 

  • Golbidi S, Badran M, Laher I (2011) Diabetes and alpha lipoic Acid. Front Pharmacol 2:69. https://doi.org/10.3389/fphar.2011.00069

    Article  Google Scholar 

  • Green DE, Morris TW, Green J, Cronan JE Jr, Guest JR (1995) Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem J. https://doi.org/10.1042/bj3090853

    Article  Google Scholar 

  • Gu P, Yang F, Su T, Wang Q, Liang Q, Qi Q (2015) A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep 5(1):9684. https://doi.org/10.1038/srep09684

    Article  CAS  Google Scholar 

  • Huang M, Oppermann-Sanio FB, Steinbüchel A (1999) Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. Bacteriol 181(12):3837–3841

    Article  CAS  Google Scholar 

  • Ide T, Azechi A, Suzuki N, Kunimatsu Y, Nakajima C, Kitade S (2013) Effects of dietary α-lipoic acid enantiomers on hepatic fatty acid metabolism in rats. J Funct Foods 5(1):71–79. https://doi.org/10.1016/j.jff.2012.08.005

    Article  CAS  Google Scholar 

  • Jiang Y, Cronan JE (2005) Expression cloning and demonstration of Enterococcus faecalis lipoamidase (pyruvate dehydrogenase inactivase) as a Ser-Ser-Lys triad amidohydrolase*. J Biol Chem 280(3):2244–2256. https://doi.org/10.1074/jbc.M408612200

    Article  CAS  Google Scholar 

  • Jones JA, Collins SM, Vernacchio VR, Lachance DM, Koffas MA (2016) Optimization of naringenin and p-coumaric acid hydroxylation using the native E coli hydroxylase complex HpaBC. Biotechnol Prog 32(1):21–25. https://doi.org/10.1002/btpr.2185

    Article  CAS  Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Method 4(3):251–256. https://doi.org/10.1038/nmeth1010

    Article  CAS  Google Scholar 

  • Miller JR, Busby RW, Jordan SW, Cheek J, Henshaw TF, Ashley GW, Broderick JB, Cronan JE, Marletta MA (2000) Escherichia coli LipA Is a lipoyl synthase in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39(49):15166–15178. https://doi.org/10.1021/bi002060n

    Article  CAS  Google Scholar 

  • Mislow K, Meluch WC (1956) The Stereochemistry of α-Lipoic Acid1. J Am Chem Soc 78(22):5920–5923

    Article  CAS  Google Scholar 

  • Moon H-J, Jeya M, Yu I-S, Ji J-H, Oh D-K, Lee J-K (2009) Chaperone-aided expression of LipA and LplA followed by the increase in alpha-lipoic acid production. Appl Microbiol Biotechnol 83(2):329–337. https://doi.org/10.1007/s00253-009-1899-6

    Article  CAS  Google Scholar 

  • Nielsen MT, Madsen KM, Seppälä S, Christensen U, Riisberg L, Harrison SJ, Møller BL, Nørholm MH (2015) Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth Biol 4(3):274–282. https://doi.org/10.1021/sb500055u

    Article  CAS  Google Scholar 

  • Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G (2016) Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 100(20):8693–8699. https://doi.org/10.1007/s00253-016-7829-5

    Article  CAS  Google Scholar 

  • Peroutka Iii RJ, Orcutt SJ, Strickler JE, Butt TR (2011) SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. In: Evans JTC, Xu M-Q (eds) Heterologous gene expression in ecoli: methods and protocols. Humana Press, Totowa, NJ, pp 15–30

    Chapter  Google Scholar 

  • Pyne ME, Moo-Young M, Chung DA, Chou CP (2015) Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81(15):5103–5114. https://doi.org/10.1128/AEM.01248-15

    Article  CAS  Google Scholar 

  • Reed LJ (1998) From lipoic acid to multi-enzyme complexes. Protein Sci 7(1):220–224

    Article  CAS  Google Scholar 

  • Ren Y, Wang LH, Deng FS, Li JS, Jiang L (2019) Protective effect and mechanism of alpha-lipoic acid on partial hepatic ischemia-reperfusion injury in adult male rats. Physiol Res 68(5):739–745. https://doi.org/10.33549/physiolres.934095

    Article  CAS  Google Scholar 

  • Sagers RD, Gunsalus IC (1961) Intermediatry metabolism of diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions. Bacteriol 81(4):541–549

    Article  CAS  Google Scholar 

  • Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, Dopp ED, Dijkstra CD, Drukarch B, de Vries HE (2006) Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 177(4):2630–2637. https://doi.org/10.4049/jimmunol.177.4.2630

    Article  CAS  Google Scholar 

  • Wu H, Li Y, Ma Q, Li Q, Jia Z, Yang B, Xu Q, Fan X, Zhang C, Chen N, Xie X (2018) Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 49:248–256. https://doi.org/10.1016/j.ymben.2018.09.001

    Article  CAS  Google Scholar 

  • Zhang J, Zhou X, Wu W, Wang J, Xie H, Wu Z (2017) Regeneration of glutathione by alpha-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity. Environ Toxicol Pharmacol 51:30–37. https://doi.org/10.1016/j.etap.2017.02.022

    Article  CAS  Google Scholar 

  • Zhang W, Chen X, Yu F, Li F, Li W, Yi M, Jia K (2021) Alpha-lipoic acid exerts its antiviral effect against viral hemorrhagic septicemia virus (VHSV) by promoting upregulation of antiviral genes and suppressing VHSV-induced oxidative stress. Virol Sin 36(6):1520–1531. https://doi.org/10.1007/s12250-021-00440-5

    Article  CAS  Google Scholar 

  • Zhao X, Miller JR, Cronan JE (2005) The reaction of LipB, the octanoyl-[acyl carrier protein]: protein N-octanoyltransferase of lipoic acid synthesis proceeds through an acyl-enzyme intermediate. Biochemistry 44(50):16737–16746. https://doi.org/10.1021/bi051865y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jianmin Yang, Dr. Yunquan Zheng, Dr. Feng Li, Dr. Mingmao Chen, and Dr. Li Chen for their helpful discussion and suggestions.

Supplementary information

Supplementary Table S1-3 and Supplementary Figure S1-5 can be found in the Supplementary material.

Funding

This work was supported by the National Natural Science Foundation of China (32001037), the Natural Science Foundation of Fujian Province (2020J01491), Fuzhou University Research Fund (GXRC-20033).

Author information

Authors and Affiliations

Authors

Contributions

JX, SG, and XS conceived and designed the research. JX conducted experiments. JX, SG, and XS analyzed data. JX wrote the manuscript. SG revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Shaobin Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1968 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Guo, S. & Shi, X. Metabolic engineering of Escherichia coli for the production of (R)-α-lipoic acid. Biotechnol Lett 45, 273–286 (2023). https://doi.org/10.1007/s10529-022-03341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-022-03341-z

Keywords

Navigation