Skip to main content
Log in

Optimization of ultrasound-assisted production of ergosterol from Penicillium brevicompactum by Taguchi statistical method

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Ergosterol as a primary metabolite and precursor of vitamin D2, is the most plentiful mycosterols in fungal cell membrane. Process optimization to increase the yield and productivity of biological products is a topic of interest. Ultrasonic waves have many applications in biotechnology, like cell disruption, and enhancement of primary and secondary metabolites production. This study disclosed an optimal condition for ultrasound-assisted production (UAP) of ergosterol from Penicillium brevicompactum MUCL 19,011 using L9 Taguchi statistical method. The intensity (IS), time of sonication (TS), treatment frequency (TF), and number of days of treatment (DT) were allocated to study the effects of ultrasound on ergosterol production. The results were analyzed using Minitab version 19. The maximum ergosterol, 11 mg/g cell dry weight (CDW), was produced on the tenth day while all factors were at a low level. The days of treatment with a contribution of 45.48% was the most significant factor for ergosterol production. For the first time, this study revealed the positive effect of ultrasound on the production of ergosterol. Ergosterol production increased 73% (4.63 mg/g CDW) after process optimization. Finally, a mathematical model of ultrasound factors with a regression coefficient of R2 = 0.978 was obtained for the ergosterol production during ultrasound treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Biores Technol 100:5979–5987

    Article  CAS  Google Scholar 

  • Ardestani F, Fatemi SS-A, Yakhchali B, Hosseyni SM, Najafpour G (2010) Evaluation of mycophenolic acid production by Penicillium brevicompactum MUCL 19011 in batch and continuous submerged cultures. Biochem Eng J 50:99–103

    Article  CAS  Google Scholar 

  • Avhad DN, Rathod VK (2014) Ultrasound stimulated production of a fibrinolytic enzyme. Ultrason Sonochem 21:182–188

    Article  CAS  PubMed  Google Scholar 

  • Behzadnia A, Moosavi-Nasab M, Ojha S, Tiwari BK (2020) Exploitation of ultrasound technique for enhancement of microbial metabolites production. Molecules 25:5473

    Article  CAS  PubMed Central  Google Scholar 

  • Chain E, Gualandi G, Morisi G (1966) Aeration studies. IV. Aeration conditions in 3000-liter submerged fermentations with various microorganisms. Biotechnol Bioeng 8:595–619

    Article  CAS  Google Scholar 

  • Chisti Y (2003) Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol 21:89–93

    Article  CAS  PubMed  Google Scholar 

  • Chuanyun D, Bochu W, Chuanren D, Sakanishi A (2003) Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii. Colloids Surf, B 30:37–41

    Article  CAS  Google Scholar 

  • Clark D (1962) Submerged citric acid fermentation of ferrocyanide-treated beet molasses: morphology of pellets of Aspergillus niger. Can J Microbiol 8:133–136

    Article  CAS  PubMed  Google Scholar 

  • Cui YQ (1997) Fungal fermentation: technological aspects. Doctoral Thesis, Delft University of Technology

  • Box GE, Hunter WH, Hunter S (1978) Statistics for experimenters, vol 664. John Wiley and sons New York

    Google Scholar 

  • Fontana F, Iberite F, Cafarelli A, Aliperta A, Baldi G, Gabusi E, Dolzani P, Cristino S, Lisignoli G, Pratellesi T (2021) Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation. Ultrasonics 116:106495

    Article  CAS  PubMed  Google Scholar 

  • Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm L, Kelly S, Krull R, Hempel D (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375

    Article  CAS  PubMed  Google Scholar 

  • He J, Qiu Y, Ji X, Liu X, Qiu Z, Xu J, Xia J (2021) A novel strategy for producing cellulase from Trichoderma reesei with ultrasound-assisted fermentation using spent mushroom substrate. Process Biochem 104:110–116

    Article  CAS  Google Scholar 

  • Heleno SA, Diz P, Prieto M, Barros L, Rodrigues A, Barreiro MF, Ferreira IC (2016) Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem 197:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Hilger AB, Thomas KI, Krause HH (1986) The effects of several buffers on growth and phosphorus nutrition of selected ectomycorrhizal fungi. Soil Biol Biochem 18:61–67

    Article  CAS  Google Scholar 

  • Karna SK, Sahai R (2012) An overview on Taguchi method. Int J Eng Math Sci 1:1–7

    Google Scholar 

  • Kristiansen B (1988) Developments in industrial fungal biotechnology. Fungal Biotechnol 203–223, CiNii Articles

  • Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu TR, Nörtemann B (2010) Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. Biosystems engineering II. Springer, Berlin, pp 1–21

    Google Scholar 

  • Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv 29:768–780

    Article  CAS  PubMed  Google Scholar 

  • Lavová B, Hároniková A, Márová I, Urminská D (2020) Production of ergosterol by Saccharomyces cerevisiae. J Microbiol Biotechnol Food Sci 9:1934–1940

    Google Scholar 

  • Metz B, Kossen N (1977) The growth of molds in the form of pellets–a literature review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Montgomery DC (2017) Design and analysis of experiments. John wiley & sons, Arizona State University, New York

    Google Scholar 

  • Newell SY (1994) Total and free ergosterol in mycelia of saltmarsh ascomycetes with access to whole leaves or aqueous extracts of leaves. Appl Environ Microbiol 60:3479–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell S, Arsuffi T, Fallon R (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54:1876–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsvik E, Kristiansen B (1994) Rheology of filamentous fermentations. Biotechnol Adv 12:1–39

    Article  CAS  PubMed  Google Scholar 

  • Pasanen A-L, Yli-Pietilä K, Pasanen P, Kalliokoski P, Tarhanen J (1999) Ergosterol content in various fungal species and biocontaminated building materials. Appl Environ Microbiol 65:138–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar SV, Rathod VK (2018) Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis. Ultrason Sonochem 45:173–179

    Article  CAS  PubMed  Google Scholar 

  • Pazouki M, Panda T (2000) Understanding the morphology of fungi. Bioprocess Eng 22:127–143

    Article  CAS  Google Scholar 

  • Raskar HD, Avhad DN, Rathod VK (2014) Ultrasound assisted production of daunorubicin: process intensification approach. Chem Eng Process 77:7–12

    Article  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Van Oorschot CA (1981) Introduction to food-borne fungi. Centraalbureau voor Schimmelcultures. Institute of the Royal Netherlands Academy of Arts and Sciences

  • Santos HM, Lodeiro C, Capelo-Martínez J-L (2009) The power of ultrasound. Ultrasound in chemistry: analytical applications. Wiley Online Library, New York, pp 1–16

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2017) Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinisterra J (1992) Application of ultrasound to biotechnology: an overview. Ultrasonics 30:180–185

    Article  CAS  PubMed  Google Scholar 

  • Steel R, Martin S, Lentz C (1954) A standard inoculum for citric acid production in submerged culture. Can J Microbiol 1:150–157

    Article  CAS  PubMed  Google Scholar 

  • Subhedar PB, Gogate PR (2015) Ultrasound-assisted bioethanol production from waste newspaper. Ultrason Sonochem 27:37–45

    Article  CAS  PubMed  Google Scholar 

  • Tassinary JAF, Lunardelli A, de Souza Basso B, Dias HB, Catarina AV, Stülp S, Haute GV, Martha BA, da Silva Melo DA, Nunes FB (2018) Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake. Ultrasonics 84:290–295

    Article  CAS  PubMed  Google Scholar 

  • Tešanović K, Pejin B, Šibul F, Matavulj M, Rašeta M, Janjušević L, Karaman M (2017) A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. J Food Sci Technol 54:430–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vargas L, Pião A, Domingos R, Carmona E (2004) Ultrasound effects on invertase from Aspergillus niger. World J Microbiol Biotechnol 20:137–142

    Article  CAS  Google Scholar 

  • Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet—relationship between morphology and productivity. Appl Microbiol Biotechnol 102:2997–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Xing JZ, Yang X, Xu P, Ang WT, Chen J (2012) Ultrasound-enhanced monoclonal antibody production. Ultrasound Med Biol 38:1949–1957

    Article  PubMed  Google Scholar 

  • Yadav A, Ali AAM, Ingawale M, Raychaudhuri S, Gantayet LM, Pandit A (2020) Enhanced co-production of pectinase, cellulase and xylanase enzymes from Bacillus subtilis ABDR01 upon ultrasonic irradiation. Process Biochem 92:197–201

    Article  CAS  Google Scholar 

  • Zhao Y, Ang WT, Xing J, Zhang J, Chen J (2012) Applications of ultrasound to enhance mycophenolic acid production. Ultrasound Med Biol 38:1582–1588

    Article  PubMed  Google Scholar 

  • Zhao Y, Xing J, Xing JZ, Ang WT, Chen J (2014) Applications of low-intensity pulsed ultrasound to increase monoclonal antibody production in CHO cells using shake flasks or wavebags. Ultrasonics 54:1439–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed-Safa-Ali Fatemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1126 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vali, N., Fatemi, SSA. & Alinaghi, M. Optimization of ultrasound-assisted production of ergosterol from Penicillium brevicompactum by Taguchi statistical method. Biotechnol Lett 44, 1217–1230 (2022). https://doi.org/10.1007/s10529-022-03297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-022-03297-0

Keywords

Navigation