Skip to main content
Log in

Advanced biotechnology using methyltransferase and its applications in bacteria: a mini review

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Since prokaryotic restriction-modification (RM) systems protect the host by cleaving foreign DNA by restriction endonucleases, it is difficult to introduce engineered plasmid DNAs into newly isolated microorganisms whose RM system is not discovered. The prokaryotes also possess methyltransferases to protect their own DNA from the endonucleases. As those methyltransferases can be utilized to methylate engineered plasmid DNAs before transformation and to enhance the stability within the cells, the study on methyltransferases in newly isolated bacteria is essential for genetic engineering. Here, we introduce the mechanism of the RM system, specifically the methyltransferases and their biotechnological applications. These biotechnological strategies could facilitate plasmid DNA-based genetic engineering in bacteria strains that strongly defend against foreign DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari S, Curtis PD (2016) DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 40:575–591

    Article  CAS  PubMed  Google Scholar 

  • Albu RF, Jurkowski TP, Jeltsch A (2012) The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner. Nucleic Acids Res 40:1708–1716

    Article  CAS  PubMed  Google Scholar 

  • Barras F, Marinus MG (1989) The great GATC: DNA methylation in E. coli. Trends Genet 5:139–143

    Article  CAS  PubMed  Google Scholar 

  • Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ (2016) The epigenomic landscape of prokaryotes. PLoS Genet 12:e1005854

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanova E, Djordjevic M, Papapanagiotou I, Heyduk T, Kneale G, Severinov K (2008) Transcription regulation of the type II restriction-modification system AhdI. Nucleic Acids Res 36:1429–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer H (1964) Genetic control of restriction and modification in Escherichia Coli. J Bacteriol 88:1652–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD, Black L, Clark TA, Bushman FD (2015) Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. Mbio 6:e00648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JL, Kleckner N (1990) E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62:967–979

  • Casadesus J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donahue JP, Israel DA, Peek RM, Blaser MJ, Miller GG (2000) Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol Microbiol 37:1066–1074

    Article  CAS  PubMed  Google Scholar 

  • Dryden DT, Murray NE, Rao DN (2001) Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res 29:3728–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62

    Article  CAS  PubMed  Google Scholar 

  • Fioravanti A, Fumeaux C, Mohapatra SS, Bompard C, Brilli M, Frandi A, Castric V, Villeret V, Viollier PH, Biondi EG (2013) DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLoS Genet 9:e1003541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R (2015) BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34:169–183

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez D, Collier J (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol 88:203–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T, Tsvetkova K, Matlashov M, Truncaite L, Morgan RD, Ivanov NV, Siksnys V, Zeng LY, Severinov K (2019) BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res 47:253–265

    Article  CAS  PubMed  Google Scholar 

  • Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 5:1–6

    Article  Google Scholar 

  • Hagemann M, Gartner K, Scharnagl M, Bolay P, Lott SC, Fuss J, Huettel B, Reinhardt R, Klahn S, Hess WR (2018) Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium Synechocystis sp. PCC 6803. DNA Res 25:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernday A, Krabbe M, Braaten B, Low D (2002) Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci USA 99(Suppl 4):16470–16476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernday A, Braaten B, Low D (2004) The intricate workings of a bacterial epigenetic switch. Adv Exp Med Biol 547:83–89

    Article  CAS  PubMed  Google Scholar 

  • Heusipp G, Falker S, Schmidt MA (2007) DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol 297:1–7

    Article  CAS  PubMed  Google Scholar 

  • Horton JR, Woodcock CB, Opot SB, Reich NO, Zhang X, Cheng X (2019) The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nat Commun 10:4600

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui W, Zhang W, Kwok LY, Zhang H, Kong J, Sun T (2019) A novel bacteriophage exclusion (BREX) system encoded by the pglX gene in Lactobacillus casei Zhang. Appl Environ Microbiol 85:e01001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston CD, Cotton SL, Rittling SR, Starr JR, Borisy GG, Dewhirst FE, Lemon KP (2019) Systematic evasion of the restriction-modification barrier in bacteria. Proc Natl Acad Sci USA 116:11454–11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph N, Duppatla V, Rao DN (2006) Prokaryotic DNA mismatch repair. Prog Nucleic Acid Res Mol Biol 81:1–49

    Article  CAS  PubMed  Google Scholar 

  • Kan NC, Lautenberger JA, Edgell MH, Hutchison CA III (1979) The nucleotide sequence recognized by the Escherichia coli K12 restriction and modification enzymes. J Mol Biol 130:191–209

    Article  CAS  PubMed  Google Scholar 

  • Kang JG, Park JS, Ko JH, Kim YS (2019) Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep 9:1–12

    Article  Google Scholar 

  • Kiss A, Posfai G, Keller CC, Venetianer P, Roberts RJ (1985) Nudeotide sequence of the BsuRI restriction-modification system. Nucleic Acids Res 13:6403–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M, Wang S, Zhou B, Gonzalez D, Collier J, Turner SW, Korlach J, Shapiro L, McAdams HH (2013) Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc Natl Acad Sci USA 110:E4658–E4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobner-Olesen A, Skovgaard O, Marinus MG (2005) Dam methylation: coordinating cellular processes. Curr Opin Microbiol 8:154–160

    Article  CAS  PubMed  Google Scholar 

  • Loenen WA, Raleigh EA (2014) The other face of restriction: modification-dependent enzymes. Nucleic Acids Res 42:56–69

    Article  CAS  PubMed  Google Scholar 

  • Marinus MG (1973) Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet 127:47–55

    Article  CAS  PubMed  Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moelling K, Broecker F, Willy C (2018) A wake-up call: we need phage therapy now. Viruses-Basel 10:688

    Article  CAS  Google Scholar 

  • Mouammine A, Collier J (2018) The impact of DNA methylation in aphaproteobacteria. Mol Microbiol 110:1–10

    Article  CAS  PubMed  Google Scholar 

  • Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray SM, Panis G, Fumeaux C, Viollier PH, Howard M (2013) Computational and genetic reduction of a cell cycle to its simplest, primordial components. PLoS Biol 11:e1001749

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaraja V, Shepherd JC, Pripfl T, Bickle TA (1985) Two type I restriction enzymes from Salmonella species. Purification and DNA recognition sequences. J Mol Biol 182:579–587

    Article  CAS  PubMed  Google Scholar 

  • Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in saccharomyces cerevisiae. identification of a novel protein arginine methyltransferase. J Biol Chem 274:814–824

    Article  CAS  PubMed  Google Scholar 

  • Nye TM, Fernandez NL, Simmons LA (2020) A positive perspective on DNA methylation: regulatory functions of DNA methylation outside of host defense in Gram-positive bacteria. Crit Rev Biochem Mol Biol 55:576–591

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A, Sekulovic O, Mead EA, Pak T, Zhu S, Deikus G, Touchon M, Lewis-Sandari M, Beckford C, Zeitouni NE, Altman DR, Webster E, Oussenko I, Bunyavanich S, Aggarwal AK, Bashir A, Patel G, Wallach F, Hamula C, Huprikar S, Schadt EE, Sebra R, van Bakel H, Kasarskis A, Tamayo R, Shen A, Fang G (2020) Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 5:166–180

    Article  CAS  PubMed  Google Scholar 

  • Orzechowska B, Mohammed M (2019) The war between bacteria and bacteriophages. Growing and handling of bacterial cultures. IntechOpen, London

    Google Scholar 

  • Oshima T, Wada C, Kawagoe Y, Ara T, Maeda M, Masuda Y, Hiraga S, Mori H (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45:673–695

    Article  CAS  PubMed  Google Scholar 

  • Phue JN, Lee SJ, Trinh L, Shiloach J (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5 alpha). BiotechnolBioeng 101:831–836

    CAS  Google Scholar 

  • Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res 29:3705–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pingoud A, Fuxreiter M, Pingoud V, Wende W (2005) Type II restriction endonucleases: structure and mechanism. Cell Mol Life Sci 62:685–707

    Article  CAS  PubMed  Google Scholar 

  • Rao DN, Dryden DT, Bheemanaik S (2014) Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 42:45–55

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Lee HM, Thai TD, Na D (2020) Identification of a cytosine methyltransferase that improves transformation efficiency in Methylomonas sp. DH-1. Biotechnol Biofuels 13:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins-Manke JL, Zdraveski ZZ, Marinus M, Essigmann JM (2005) Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J Bacteriol 187:7027–7037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Macelis D (2000) REBASE—restriction enzymes and methylases. Nucleic Acids Res 28:306–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Kruger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2005) REBASE--restriction enzymes and DNA methyltransferases. Nucleic Acids Res 33:D230–D232

    Article  CAS  PubMed  Google Scholar 

  • Samson JE, Magadan AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687

    Article  CAS  PubMed  Google Scholar 

  • Scharnagl M, Richter S, Hagemann M (1998) The cyanobacterium Synechocystis sp. strain PCC 6803 expresses a DNA methyltransferase specific for the recognition sequence of the restriction endonuclease PvuI. J Bacteriol 180:4116–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenova E, Minakhin L, Bogdanova E, Nagornykh M, Vasilov A, Heyduk T, Solonin A, Zakharova M, Severinov K (2005) Transcription regulation of the EcoRV restriction-modification system. Nucleic Acids Res 33:6942–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seong HJ, Han SW, Sul WJ (2021) Prokaryotic DNA methylation and its functional roles. J Microbiol 59:242–248

    Article  CAS  PubMed  Google Scholar 

  • Stancheva I, Koller T, Sogo JM (1999) Asymmetry of Dam remethylation on the leading and lagging arms of plasmid replicative intermediates. EMBO J 18:6542–6551

  • van der Woude M, Braaten B, Low D (1996) Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol 4:5–9

    Article  PubMed  Google Scholar 

  • Vonfreiesleben U, Rasmussen KV, Schaechter M (1994) Seqa limits DnaA activity in replication from oric in Escherichia-Coli. Mol Microbiol 14:763–772

    Article  CAS  Google Scholar 

  • Wang B, Yu J, Zhang W, Meldrum DR (2015) Premethylation of foreign DNA improves integrative transformation efficiency in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81:8500–8506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JA, Carnes AE, Hodgson CP (2009) Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 27:353–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wion D, Casadesus J (2006) N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226–235

    Article  PubMed  Google Scholar 

  • Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, Suzuki T (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 37:e3

    Article  PubMed  Google Scholar 

  • Zhang G, Wang W, Deng A, Sun Z, Zhang Y, Liang Y, Che Y, Wen T (2012) A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genet 8:e1002987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF), funded by the Korea government (MSIT) (No. NRF-2018R1A5A1025077), and by the Chung-Ang University Research Grants in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokyun Na.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Lee, HM., Shen, J. et al. Advanced biotechnology using methyltransferase and its applications in bacteria: a mini review. Biotechnol Lett 44, 33–44 (2022). https://doi.org/10.1007/s10529-021-03208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-021-03208-9

Keywords

Navigation