Skip to main content

Advertisement

Log in

Boosting Tat DNA vaccine with Tat protein stimulates strong cellular and humoral immune responses in mice

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the efficacy of a novel DNA priming-protein boosting regimen in simultaneous enhancing humoral and cellular immunogenicity of the HIV-1-Tat-based candidate vaccines in mice. The experimental BALB/c mice were successfully immunized with the HIV-1-Tat DNA vaccine and boosted with the corresponding protein vaccine over a two-week interval and the elicitation of cellular and humoral immune responses were simultaneously assessed. The results showed that the prime-boost immunization has significantly given rise to lymphocyte proliferation and CTL responses, as well as the levels of both IgG and IgG antibodies compared to the other candidate vaccines. The results of the Th polarization also revealed that the Th1: Th2 indexes in the mice vaccinated with the HIV-1 Tat protein, Tat DNA, and the prime-boost vaccines were 1.03, 1.19, and 1.25, respectively. The results suggest that co-administration of the HIV-1-Tat DNA with the corresponding protein may serve as a potential formulation for enhancing of Tat vaccineinduced immunity and has measurable effects on shaping vaccines’ induced Th polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    Article  CAS  PubMed  Google Scholar 

  • Alhetheel A, Aly M, Kryworuchko M (2013) Immune responses and cell signaling during chronic HIV infection. INTECH Open Access Publisher

  • Alipour S, Mahdavi A, Abdoli A (2017) The effects of CpG-ODNs and Chitosan adjuvants on the elicitation of immune responses induced by the HIV-1-Tat-based candidate vaccines in mice. Pathog Dis 75:1

    Article  CAS  Google Scholar 

  • Asbach B et al (2016) Potential to streamline heterologous DNA prime and NYVAC/protein boost HIV vaccine regimens in rhesus macaques by employing improved antigens. J Virol 90:4133–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borsutzky S et al (2006) Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. Vaccine 24:2049–2056

    Article  CAS  PubMed  Google Scholar 

  • Brake DA, Goudsmit J, Krone W, Schammel P, Appleby N, Meloen R, Debouck C (1990) Characterization of murine monoclonal antibodies to the tat protein from human immunodeficiency virus type 1. J Virol 64:962–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SA et al (2010) Heterologous prime-boost HIV-1 vaccination regimens in pre-clinical and clinical trials. Viruses 2:435–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cafaro A et al (2000) SHIV89. 6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. J Med Primatol 29:193–208

    Article  CAS  PubMed  Google Scholar 

  • Cafaro A et al (2001) Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P). Vaccine 19:2862–2877

    Article  CAS  PubMed  Google Scholar 

  • Calarota SA et al (2008) HIV-1-specific T cell precursors with high proliferative capacity correlate with low viremia and high CD4 counts in untreated individuals. J Immunol 180:5907–5915

    Article  CAS  PubMed  Google Scholar 

  • Caputo A et al (2009) HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 28:285–334

    Article  CAS  PubMed  Google Scholar 

  • Castaldello A et al (2006) DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 24:5655–5669

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lai J, Pan Q, Tang Z, Yu Y, Zang G (2010) The delivery of HBcAg via Tat-PTD enhances specific immune response and inhibits Hepatitis B virus replication in transgenic mice. Vaccine 28:3913–3919

    Article  CAS  PubMed  Google Scholar 

  • Cui Z et al (2004) Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 22:2631–2640

    Article  CAS  PubMed  Google Scholar 

  • Dale CJ et al (2006) Prime-boost strategies in DNA vaccines. Methods Mol Med 127:171–197

    CAS  PubMed  Google Scholar 

  • Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617–648

    Article  CAS  PubMed  Google Scholar 

  • Ensoli B et al (1994) Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371:674–680

    Article  CAS  PubMed  Google Scholar 

  • Ensoli B et al (2006) Candidate HIV-1 Tat vaccine development: from basic science to clinical trials. Aids 20:2245–2261

    Article  PubMed  Google Scholar 

  • Fanales-Belasio E et al (2009) HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol 182:2888–2897

    Article  CAS  PubMed  Google Scholar 

  • Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB (2013) Synthetic DNA vaccines: improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front Immunol 4:354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouts TR et al (2015) Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc Natl Acad Sci 112:E992–E999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV (2003) Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol 171:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Hammer SM et al (2013) Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 369:2083–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes BF (2015) New approaches to HIV vaccine development. Curr Opin Immunol 35:39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffron R, Ngure K, Mugo N, Celum C, Kurth A, Curran K, Baeten JM (2012) Willingness of Kenyan HIV-1 serodiscordant couples to use antiretroviral based HIV-1 prevention strategies. J Acquir Immune Defic Syndr 61:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S-L, Klaniecki J, Dykers T, Sridhar P, Travis BM (1991) Neutralizing antibodies against HIV-1 BRU and SF2 isolates generated in mice immunized with recombinant vaccinia virus expressing HIV-1 (BRU) envelope glycoproteins and boosted with homologous gp160. AIDS Res Hum Retroviruses 7:615–620

    Article  CAS  PubMed  Google Scholar 

  • Iyer SS, Amara RR (2014) DNA/MVA vaccines for HIV/AIDS. Vaccines 2:160–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK (2011) Tits and bits of HIV Tat protein. Expert Opin Biol Ther 11:269–283

    Article  CAS  PubMed  Google Scholar 

  • Kardani K, Bolhassani A, Shahbazi S (2016) Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine 34:413–423

    Article  CAS  PubMed  Google Scholar 

  • Kianmehr Z et al (2015) An effective DNA priming-protein boosting approach for the cervical cancer vaccination. Pathog Dis 73:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788. https://doi.org/10.1038/nrg2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letvin NL et al (1997) Potent, protective anti-HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination. Proc Natl Acad Sci 94:9378–9383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2013) The effects of HIV Tat DNA on regulating the immune response of HIV DNA vaccine in mice. Virol J 10:1

    Article  CAS  Google Scholar 

  • Liu A, Cohen S, Follansbee S, Cohan D, Weber S, Sachdev D, Buchbinder S (2014) Early experiences implementing pre-exposure prophylaxis (PrEP) for HIV prevention in San Francisco. PLoS Med 11:e1001613

    Article  PubMed  PubMed Central  Google Scholar 

  • Mascarell L, Fayolle C, Bauche C, Ladant D, Leclerc C (2005) Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 79:9872–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 10:11–23

    Article  CAS  PubMed  Google Scholar 

  • Memarnejadian A, Roohvand F (2010) Fusion of HBsAg and prime/boosting augment Th1 and CTL responses to HCV polytope DNA vaccine. Cell Immunol 261:93–98

    Article  CAS  PubMed  Google Scholar 

  • Parham P (2014) The immune system. Garland Science, New York

    Book  Google Scholar 

  • Partidos CD, Moreau E, Chaloin O, Tunis M, Briand JP, Desgranges C, Muller S (2004) A synthetic HIV-1 Tat protein breaches the skin barrier and elicits Tat-neutralizing antibodies and cellular immunity. Eur J Immunol 34:3723–3731

    Article  CAS  PubMed  Google Scholar 

  • Pugliese A, Vidotto V, Beltramo T, Petrini S, Torre D (2005) A review of HIV-1 Tat protein biological effects. Cell Biochem Funct 23:223–227

    Article  CAS  PubMed  Google Scholar 

  • Rajput ZI, Hu S-h, Xiao C-w, Arijo AG (2007) Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 8:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rerks-Ngarm S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Rolland M et al (2007) Reconstruction and function of ancestral center-of-tree human immunodeficiency virus type 1 proteins. J Virol 81:8507–8514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roohvand F, Aghasadeghi M-R, Sadat SM, Budkowska A, Khabiri A-R (2007) HCV core protein immunization with Montanide/CpG elicits strong Th1/Th2 and long-lived CTL responses. Biochem Biophys Res Commun 354:641–649

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Seder RA, Hill AV (2000) Vaccines against intracellular infections requiring cellular immunity. Nature 406:793

    Article  CAS  PubMed  Google Scholar 

  • Shete A, Thakar M, Mehendale S, Paranjape R (2014) Is prime boost strategy a promising approach in HIV vaccine development. J AIDS Clin Res 5:2

    Google Scholar 

  • Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H (2005) The role of the T cell in autoimmune inflammation. Arthr Res Ther 7:S4

    Article  Google Scholar 

  • Spearman P (2003) HIV vaccine development: lessons from the past and promise for the future. Curr HIV Res 1:101–120

    Article  CAS  PubMed  Google Scholar 

  • Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295:338–342

    Article  CAS  PubMed  Google Scholar 

  • Tao K et al (2011) Enhancement of specific cellular immune response induced by glycosyl-phosphatidylinositol-anchored BCR/ABL and mIL-12. Cancer Biol Ther 12:881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodland DL (2004) Jump-starting the immune system: prime–boosting comes of age. Trends Immunol 25:98–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors deeply thank the research council of the Institute for Advanced Studies in Basic Sciences (IASBS) for its support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atiyeh Mahdavi.

Ethics declarations

Conflict of interest

None of the authors has any potential financial conflict of interest related to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, S., Mahdavi, A. Boosting Tat DNA vaccine with Tat protein stimulates strong cellular and humoral immune responses in mice. Biotechnol Lett 42, 505–517 (2020). https://doi.org/10.1007/s10529-020-02801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02801-8

Keywords

Navigation