Skip to main content

Advertisement

Log in

Microbes, not humans: exploring the molecular basis of Pseudouridimycin selectivity towards bacterial and not human RNA polymerase

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Bacterial RNA polymerase (bRNAP) represent a crucial target for curtailing microbial activity but its structural and sequence similarities with human RNA polymerase II (hRNAPII) makes it difficult to target. Recently, Pseudouridimycin (PUM), a novel nucleoside analogue was reported to selectively inhibit bRNAP and not hRNAP. Till date, underlying mechanisms of PUM selectivity remains unresolved, hence the aim of this study.

Results

Using sequence alignment method, we observed that the β′ of bRNAP and the RPB1 subunits of hRNAPII were highly conserved while the β and RPB2 subunits of both proteins were also characterized by high sequence variations. Furthermore, the impact of these variations on the differential binding of PUM was evaluated using MMPB/SA binding free energy and per-residue decomposition analysis. These revealed that PUM binds better to bRNAP than hRNAP with prominent bRNAP active site residues that contributed the most to PUM binding and stabilization lacking in hRNAPII active site due to positional substitution. Also, the binding of PUM to hRNAP was characterized by the formation of unfavorable interactions. In addition, PUM assumed favorable orientations that possibly enhanced its mobility towards the hydrophobic core region of bRNAP. On the contrary, unfavorable intramolecular interactions characterize PUM orientations at the binding site of hRNAPII, which could restrict its movement due to electrostatic repulsions.

Conclusion

These findings would enhance the design of potent and selective drugs for broad-spectrum antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agoni C, Ramharack P, Soliman M (2018) Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights. Fut Med Chem. https://doi.org/10.4155/fmc-2017-0197

    Article  Google Scholar 

  • Artsimovitch I, Vassylyev DG (2006) Is it easy to stop RNA polymerase? Cell Cycle 5:399–404

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, Van Gunsteren WF et al (2012) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Burgess RR, Erickson B, Gentry D et al (1987) In: Reznikoff WS (ed) Bacterial RNA polymerase subunits and genes in RNA polymerase and the regulation of transcription, vol 198. Elsevier, New York, pp 3–15

    Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A et al (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Wang W, Regev-Yochay G et al (2015) Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl 8:240–247

    Article  PubMed  Google Scholar 

  • Collins SL, Carr DF, Pirmohamed M (2016) Advances in the pharmacogenomics of adverse drug reactions. Drug Saf 39:15–27

    Article  CAS  PubMed  Google Scholar 

  • Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Sci (New York, NY) 292:1863–1876

    Article  CAS  Google Scholar 

  • Crane EA, Gademann K (2016) Capturing biological activity in natural product fragments by chemical synthesis. Angew Chem Int Ed 55:3882–3902

    Article  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibioitc resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebright RH (2000) RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol 304:687–698

    Article  CAS  PubMed  Google Scholar 

  • El Rashedy AA, Olotu FA, Soliman MES (2018) Dual drug targeting of mutant Bcr-Abl induces inactive conformation: new strategy for the treatment of chronic myeloid leukemia and overcoming monotherapy resistance. Chem Biodivers 15:e1700533

    Article  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Ferraris DM, Miggiano R, Rossi F, Rizzi M (2018) Mycobacterium tuberculosis molecular determinants of infection, survival strategies, and vulnerable targets. Pathogens 7:17

    Article  CAS  PubMed Central  Google Scholar 

  • Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378

    Article  PubMed  Google Scholar 

  • Garon SL, Pavlos RK, White KD et al (2017) Pharmacogenomics of off-target adverse drug reactions. Br J Clin Pharmacol 83:1896–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grest GS, Kremer K (1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33:3628–3631

    Article  CAS  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 4:17

    Article  CAS  Google Scholar 

  • Hayes JM, Archontis G (2012) MM-GB(PB)SA calculations of protein-ligand binding free energies. In: Molecular dynamics—studies of synthetic and biological macromolecules. InTechOpen

  • Hou T, Wang J, Li Y et al (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Comput Sci 51:69–82

    Article  CAS  Google Scholar 

  • Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Curtis A, Hoskins C (2018) Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 10:11

    Article  CAS  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Borukhov S (2016) Bacterial RNA polymerase–DNA interaction: the driving force of gene expression and the target for drug action. Front Mol Biosci 3:73

    PubMed  PubMed Central  Google Scholar 

  • MacGowan A, Macnaughton E (2017) Antibiotic resistance. Medicine (Baltimore) 45:622–628

    Article  Google Scholar 

  • Machaba KE, Cele FN, Mhlongo NN, Soliman MES (2016) Sliding clamp of DNA polymerase III as a drug target for TB therapy: comprehensive conformational and binding analysis from molecular dynamic simulations. Cell Biochem Biophys 74:473–481

    Article  CAS  PubMed  Google Scholar 

  • Machaba KE, Mhlongo NN, Dokurugu YM, Soliman ME (2017) Tailored-pharmacophore model to enhance virtual screening and drug discovery: a case study on the identification of potential inhibitors against drug-resistant Mycobacterium tuberculosis (3R)-hydroxyacyl-ACP dehydratases. Fut Med Chem 9:1055–1071

    Article  CAS  Google Scholar 

  • Maffioli SI, Zhang Y, Degen D et al (2017) Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 169:1240–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malleshappa Gowder S, Chatterjee J, Chaudhuri T, Paul K (2014) Prediction and analysis of surface hydrophobic residues in tertiary structure of proteins. Sci World J. https://doi.org/10.1155/2014/971258

    Article  Google Scholar 

  • Molodtsov V, Fleming PR, Eyermann CJ et al (2015) X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J Med Chem 58:3156–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay J, Das K, Ismail S et al (2008) The RNA polymerase “Switch Region” is a target for inhibitors. Cell 135:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami K (2015) Structural biology of bacterial RNA polymerase. Biomolecules 5:848–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami KS, Darst SA (2003) Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol 13:31–39

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Xu L, Yin Y et al (2017) Nucleoside analogue 2′-C-methylcytidine inhibits hepatitis E virus replication but antagonizes ribavirin. Arch Virol 162:2989–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson LA (2017) Understanding and overcoming antibiotic resistance. PLoS Biol 15:e2003775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivers EC, Mancera RL (2008) New anti-tuberculosis drugs in clinical trials with novel mechanisms of action. Drug Discov Today 13:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular synamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  PubMed  Google Scholar 

  • Santos RS, Figueiredo C, Azevedo NF et al (2017) Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: towards advanced delivery of antibiotics. Adv Drug Deliv Rev 1:1–10. https://doi.org/10.1016/j.addr.2017.12.010

    Article  CAS  Google Scholar 

  • Seifert E (2014) OriginPro 9.1: scientific data analysis and graphing software: software review. J Chem Inf Model 54:1552

    Article  CAS  PubMed  Google Scholar 

  • Sheppard C, James E, Barton G et al (2016) Is it easy to stop RNA polymerase? Cell Cycle 5:399–404

    Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinokrot H, Smerat T, Najjar A, Karaman R (2017) Advanced prodrug strategies in nucleoside and non-nucleoside antiviral agents: a review of the recent five years. Molecules 22:1736

    Article  CAS  PubMed Central  Google Scholar 

  • Speck-Planche A, Cordeiro MNDS (2012) Computer-aided drug design methodologies toward the design of anti-hepatitis C agents. Curr Top Med Chem 12:802–813

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Degen D, Ebright YW, Ebright RH (2012) Frequency, spectrum, and nonzero fitness costs of resistance to myxopyronin in Staphylococcus aureus

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T A peer-reviewed. J Formul Manag 40:277–283

    Google Scholar 

  • Vivet-Boudou V, Isel C, El Safadi Y et al (2015) Evaluation of anti-HIV-1 mutagenic nucleoside analogues. J Biol Chem 290:371–383

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the College of Health Sciences, University of KwaZulu-Natal for their infrastructural and financial support. Likewise, we thank the Center for High Performance Computing, Cape-Town for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. Soliman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbad, A.H., Agoni, C., Olotu, F.A. et al. Microbes, not humans: exploring the molecular basis of Pseudouridimycin selectivity towards bacterial and not human RNA polymerase. Biotechnol Lett 41, 115–128 (2019). https://doi.org/10.1007/s10529-018-2617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2617-1

Keywords

Profiles

  1. Clement Agoni