Biotechnology Letters

, Volume 40, Issue 6, pp 981–987 | Cite as

Subcellular localization defines modification and production of Δ9-tetrahydrocannabinolic acid synthase in transiently transformed Nicotiana benthamiana

  • Marcus Geissler
  • Jascha Volk
  • Felix Stehle
  • Oliver Kayser
  • Heribert Warzecha
Original Research Paper



Through heterologous expression of the tetrahydrocannabinolic acid synthase (THCAS) coding sequence from Cannabis sativa L. in Nicotiana benthamiana, we evaluated a transient plant-based expression system for the production of enzymes involved in cannabinoid biosynthesis.


Thcas was modularized according to the GoldenBraid grammar and its expression tested upon alternative subcellular localization of the encoded catalyst with and without fusion to a fluorescent protein. THCAS was detected only when ER targeting was used; cytosolic and plastidal localization resulted in no detectable protein. Moreover, THCAS seems to be glycosylated in N. benthamiana, suggesting that this modification might have an influence on the stability of the protein. Activity assays with cannabigerolic acid as a substrate showed that the recombinant enzyme produced not only THCA (123 ± 12 fkat g FW −1 activity towards THCA production) but also cannabichromenic acid (CBCA; 31 ± 2.6 fkat g FW −1 activity towards CBCA production).


Nicotiana benthamiana is a suitable host for the generation of cannabinoid producing enzymes. To attain whole pathway integration, careful analysis of subcellular localization is necessary.


Cannabinoids Cannabis sativa L. Modular cloning Plant metabolic engineering Tetrahydrocannabinolic acid synthase (THCAS) Tobacco 


Supporting information

Supplementary Fig. 1—Localization of THCAS fused with YFP and targeted to the apoplast (er), chloroplast (cp) or without a targeting signal. Plants solely producing YFP served as a positive control.

Supplementary material

10529_2018_2545_MOESM1_ESM.docx (569 kb)
Supplementary material 1 (DOCX 569 kb)


  1. Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bow EW, Rimoldi JM (2016) The structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Med Chem 8:17–39Google Scholar
  3. Carvalho A, Hansen EH, Kayser O, Carlsen S, Stehle F (2017) Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res. PubMedPubMedCentralCrossRefGoogle Scholar
  4. Fasinu PS, Phillips S, ElSohly MA, Walker LA (2016) Current status and prospects for cannabidiol preparations as new therapeutic agents. Pharmacotherapy 36(7):781–796CrossRefPubMedGoogle Scholar
  5. Fräbel S, Krischke M, Staniek A, Warzecha H (2016) Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes. Biotechnol J 11(12):1586–1594CrossRefPubMedGoogle Scholar
  6. Fräbel S, Wagner B, Schmidts V, Krischke M, Thiele CM, Staniek A, Warzecha H (2018) Engineering of new-to-nature halogenated indigo precursors in plants. Met Eng 46:20–27CrossRefGoogle Scholar
  7. Lee DW, Jung C, Hwang I (2013) Cytosolic events involved in chloroplast protein targeting. Biochim Biophys Acta 1833(2):245–252CrossRefPubMedGoogle Scholar
  8. Onofri C, de Meijer EPM, Mandolino G (2015) Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 116:57–68CrossRefPubMedGoogle Scholar
  9. Page JE, Stout JM (2015) Cannabichromenic acid synthase from Cannabis sativa. WO 2015/196275 A1Google Scholar
  10. Reed J, Stephenson MJ, Miettinen K, Brouwer B, Leveau A, Brett P, Goss RJM, Goossens A, O’Connell MA, Osbourn A (2017) A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab Eng 42:185–193CrossRefPubMedPubMedCentralGoogle Scholar
  11. Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162(3):1618–1631CrossRefPubMedPubMedCentralGoogle Scholar
  12. Schachtsiek J, Warzecha H, Kayser O, Stehle F (2018) Current perspectives on biotechnological cannabinoid production in plants. Planta Med. PubMedCrossRefGoogle Scholar
  13. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46(9):1578–1582CrossRefPubMedGoogle Scholar
  14. Taura F, Dono E, Sirikantaramas S, Yoshimura K, Shoyama Y, Morimoto S (2007) Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochem Biophys Res Commun 361(3):675–680CrossRefPubMedGoogle Scholar
  15. Zirpel B, Stehle F, Kayser O (2015) Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol Lett 37:1869–1875CrossRefPubMedGoogle Scholar
  16. Zirpel B, Degenhardt F, Martin C, Kayser O, Stehle F (2017) Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 259:204–212CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Marcus Geissler
    • 1
  • Jascha Volk
    • 1
  • Felix Stehle
    • 2
  • Oliver Kayser
    • 2
  • Heribert Warzecha
    • 1
  1. 1.Plant Biotechnology and Metabolic EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Laboratory of Technical Biochemistry, Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations