Biotechnology Letters

, Volume 40, Issue 6, pp 915–922 | Cite as

TERT enhances the survival rate of human fibroblasts under endoplasmic reticulum, Golgi apparatus, and lysosomal stresses

  • Amer Ali Abd El-Hafeez
  • Toru Hosoi
  • Kanako Nakatsu
  • Mina Thon
  • Akira Shimamoto
  • Hidetoshi Tahara
  • Koichiro Ozawa
Original Research Paper



The exposure of organelles, such as the endoplasmic reticulum (ER), Golgi apparatus (GA), and lysosomes, to stress activates death mechanisms. Recently, telomerase reverse transcriptase (TERT) has been shown to be involved in cell survival. However, the relationship between TERT and the stress responses is still unclear. Here, we aimed to clarify the possible mechanisms of action through which TERT promotes cell survival by studying its effect on the stresses faced by multiple organelles in human fibroblasts.


We found that TERT enhanced the survival rate of cells under ER stress, regardless of ER stress inducers such as tunicamycin (protein glycosylation inhibitor), thapsigargin (Ca2+-ATPase inhibitor), brefeldin A (protein transport inhibitor), or dithiothreitol (disulfide bond formation inhibitor). We also found that TERT enhanced the survival rate of cells under GA and lysosomal stresses.


Collectively, these results suggest that TERT suppresses cell stress and promotes cell survival via different mechanisms. These findings may offer new insights into the implications of TERT in the treatment of stress-induced conditions such as aging, obesity, and neurodegenerative diseases.


Fibroblast Multiple organelle stress Survival rate Telomerase reverse transcriptase 



This work was supported by the JSPS KAKENHI and Takeda Science Foundations.

Supporting information

Supplementary Fig. 1—Overexpression of TERT in the TIG-3-TERT cell line.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

The authors declare that there are no studies conducted with human participants or animals.

Supplementary material

10529_2018_2544_MOESM1_ESM.pptx (113 kb)
Supplementary material 1 (PPTX 112 kb)


  1. Artandi SE, DePinho RA (2009) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barzilay E, Ben-Califa N, Hirschberg K, Neumann D (2005) Uncoupling of brefeldin a-mediated coatomer protein complex-I dissociation from Golgi redistribution. Traffic 6:794–802CrossRefPubMedGoogle Scholar
  3. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352CrossRefPubMedGoogle Scholar
  4. Braakman I, Hebert DN (2013) Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013201CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown MK, Naidoo N (2012) The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 16:3–263Google Scholar
  6. Cao Y, Li H, Deb S, Liu J-P (2002) TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21:3130–3138CrossRefPubMedGoogle Scholar
  7. Cong Y-S, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dinter A, Berger E (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590CrossRefPubMedGoogle Scholar
  9. Fan J, Hu Z, Zeng L, Lu W, Tang X, Zhang J, Li T (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 26:523–534CrossRefPubMedGoogle Scholar
  10. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J cell Biol 2010:214074PubMedPubMedCentralGoogle Scholar
  11. Halperin L, Jung J, Michalak M (2014) The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 66:318–326CrossRefPubMedGoogle Scholar
  12. Hosoi T, Inoue Y, Nakatsu K, Matsushima N, Kiyose N, Shimamoto A, Tahara H, Ozawa K (2014) TERT attenuated ER stress-induced cell death. Biochem Biophys Res Commun 447:378–382CrossRefPubMedGoogle Scholar
  13. Hosoi T, Nakatsu K, Shimamoto A, Tahara H, Ozawa K (2016) Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death. Neurosci Lett 629:241–244CrossRefPubMedGoogle Scholar
  14. Jadot M, Colmant C, Wattiaux-De Coninck S, Wattiaux R (1984) Intralysosomal hydrolysis of glycyl-l-phenylalanine 2-naphthylamide. Biochem J 219:965–970CrossRefPubMedPubMedCentralGoogle Scholar
  15. Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28:67–78CrossRefPubMedGoogle Scholar
  16. Kirkegaard T, Jäättelä M (2009) Lysosomal involvement in cell death and cancer. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1793:746–754Google Scholar
  17. Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochimica et Biophysica Acta (BBA)-General Subjects 1780:1291–1303CrossRefGoogle Scholar
  18. Lee J, Sung YH, Cheong C, Choi YS, Jeon HK, Sun W, Hahn WC, Ishikawa F, Lee HW (2008) TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27:3754–3760CrossRefPubMedGoogle Scholar
  19. Lin JH, Walter P, Yen TB (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev pathmechdis Mech Dis 3:399–425CrossRefGoogle Scholar
  20. Machamer CE (2015) The Golgi complex in stress and death. Front Neurosci 6:9–421Google Scholar
  21. Mattson MP, Zhang P, Fu W (2013) Roles for TERT and Telomerase in Cell Differentiation and Apoptosis. in: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience. 2000–2013
  22. Milisav I (2011) Cellular stress responses. In: advances in regenerative medicine. InTech,, 2011
  23. Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, Schneider MD (2001) Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci 98:10308–10313CrossRefPubMedPubMedCentralGoogle Scholar
  24. Orr ME, Oddo S (2013) Autophagic/lysosomal dysfunction in Alzheimer’s disease. Alzheimer’s Res Ther 5:53CrossRefGoogle Scholar
  25. Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490:71–92CrossRefPubMedPubMedCentralGoogle Scholar
  26. Park WH, Lee MS, Park K, Kim ES, Kim BK, Lee YY (2002) Monensin-mediated growth inhibition in acute myelogenous leukemia cells via cell cycle arrest and apoptosis. Int J Cancer 101:235–242CrossRefPubMedGoogle Scholar
  27. Park WH, Kim ES, Kim BK, Lee YY (2003) Monensin-mediated growth inhibition in NCI-H929 myeloma cells via cell cycle arrest and apoptosis. Int J Oncol 23:197–204PubMedGoogle Scholar
  28. Pizzey J, Witkowski J, Jones G (1984) Monensin-induced inhibition of cell spreading in normal and dystrophic human fibroblasts. Proc Natl Acad Sci 81:4960–4964CrossRefPubMedPubMedCentralGoogle Scholar
  29. Qureshi MA, Haynes CM, Pellegrino MW (2017) The mitochondrial unfolded protein response: signaling from the powerhouse. J Biol Chem 292:13500–13506CrossRefPubMedGoogle Scholar
  30. Rosenberger S, Thorey IS, Werner S, Boukamp P (2007) A novel regulator of telomerase S100A8 mediates differentiation-dependent and calcium-induced inhibition of telomerase activity in the human epidermal keratinocyte line HaCaT. J Biol Chem 282:6126–6135CrossRefPubMedGoogle Scholar
  31. Santaguida S, Amon A (2015) Aneuploidy triggers a TFEB-mediated lysosomal stress response. Autophagy 11:2383–2384CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sasaki K, Yoshida H (2015) Organelle autoregulation—stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem 157:185–195CrossRefPubMedGoogle Scholar
  33. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res/Fundam Mol Mech Mutagen 569:29–63CrossRefGoogle Scholar
  34. Suomalainen A, Battersby BJ (2017) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19(2):77CrossRefPubMedGoogle Scholar
  35. Taniguchi M, Yoshida H (2017) TFE3, HSP47, and CREB3 pathways of the mammalian Golgi stress response. Cell Struct Funct 42:27–36CrossRefPubMedGoogle Scholar
  36. Wai LK (2004) Telomeres, telomerase, and tumorigenesis–a review Medscape. Gen Med 6:3CrossRefGoogle Scholar
  37. Yadav RK, Chae S-W, Kim H-R, Chae HJ (2014) Endoplasmic reticulum stress and cancer. J cancer Prev 19:75–88CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang GF, Driouich A, Staehelin LA (1993) Effect of monensin on plant Golgi: re-examination of the monensin-induced changes in cisternal architecture and functional activities of the Golgi apparatus of sycamore suspension-cultured cells. J Cell Sci 104:819–831PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacotherapy, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Global Career Design CenterHiroshima UniversityHigashi-Hiroshima CityJapan
  3. 3.Pharmacology and Experimental Oncology Unit, Cancer Biology DepartmentNational Cancer Institute, Cairo UniversityCairoEgypt
  4. 4.Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations