Biotechnology Letters

, Volume 40, Issue 5, pp 829–836 | Cite as

Flocculation and pentadecane production of a novel filamentous cyanobacterium Limnothrix sp. strain SK1-2-1

  • Takuya Sugawara
  • Mariko Chinzei
  • Setsuko Numano
  • Chifumi Kitazaki
  • Munehiko Asayama
Original Research Paper



A novel filamentous cyanobacterium, a photosynthesizing microorganism, was isolated from a river, and its unique features of flocculation and pentadecane production were characterized.


Microscopic observations and a phylogenetic analysis with 16S rDNA revealed that this strain was a Limnothrix species denoted as the SK1-2-1 strain. Auto cell-flocculation was observed when this strain was exposed to a two-step incubation involving a standing cultivation following a shaking preincubation. Flocculation was enhanced by blue light at a wavelength at 470 nm and irradiation for several hours to 1 day. Moreover, the strain exhibiting exponential cell growth may preferentially accumulate alkanes as pentadecane C15H32 alkane, which may be used as jet fuel, at a range of approximately 1% in the dry cell weight of flocculated cells.


This is the first study on biofuel production using flocculated cells in which the specific manner of production may be regulated by cultivation conditions.


Alkane Blue light Cell aggregation Filamentous cyanobacteria Jet fuel Polysaccharide 



This work was partially supported by a propulsive project from Ibaraki University (to MA) and PRESTO (Sakigake project) of the Japan Science and Technology Agency (to MA).

Supporting information

Supplementary Fig. 1—Cyanobacterium SK1-2-1 cells.

Supplementary Fig. 2—Phylogenetic analysis.

Supplementary material

10529_2018_2525_MOESM1_ESM.doc (554 kb)
Supplementary material 1 (DOC 554 kb)


  1. Acinas SG, Haverkamp THA, Huisman J, Stal LJ (2009) Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J 3:31–46CrossRefPubMedGoogle Scholar
  2. Anderson SL, Mcintosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asayama M (2012) Overproduction and easy recovery of target gene products from cyanobacteria, photosynthesizing microorganisms. Appl Microbiol Biotechnol 95:683–695CrossRefPubMedPubMedCentralGoogle Scholar
  4. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9:e85140CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ducat CD, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103CrossRefPubMedGoogle Scholar
  6. Enomoto G, Nomura R, Shimoda T, Win-N-N, Narikawa R, Ikeuchi M (2014) Cyanobacteriochrome SesA is a diguanylate cyclase that induces cell aggregation in Thermosynechococcus. J Biol Chem 289:24801–24809Google Scholar
  7. Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T, Sivonen K (2005) Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microbial Ecol 49:176–182CrossRefGoogle Scholar
  8. Kageyama H, Waditee-Sirisattha R, Sirisattha S, Tanaka Y, Mahakhant A, Tanaka T (2015) Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Curr Microbiol 71:115–120CrossRefPubMedGoogle Scholar
  9. Kawano Y, Saotome T, Ochiai Y, Katayama M, Narikawa R, Ikeuchi M (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966CrossRefPubMedGoogle Scholar
  10. Kitazaki C, Numano S, Takanezawa A, Nishizawa T, Shirai M, Asayama M (2013) Characterization of lysis of the multicellular cyanobacterium Limnothrix/Pseudanabaena sp. strain ABRG5-3. Biosci Biotech Biochem 77:2339–2347CrossRefGoogle Scholar
  11. Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S (2013) Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Biores Technol 131:195–201CrossRefGoogle Scholar
  12. Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V (2012) The microalga Parachlorella kessleri-a novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107CrossRefPubMedGoogle Scholar
  13. Nishizawa T, Hanami T, Hirano E, Miura T, Watanabe Y, Takanezawa A, Komatsuzaki M, Ohta H, Shirai M, Asayama M (2010) Isolation and molecular characterization of a multicellular cyanobacterium, Limnothrix/Pseudanabaena sp. strain ABRG5-3. Biosci Biotech Biochem 74:1827–1835CrossRefGoogle Scholar
  14. Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137. Appl Environ Microbiol 79:6093–6101CrossRefPubMedPubMedCentralGoogle Scholar
  15. Rippka R (1989) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27CrossRefGoogle Scholar
  16. Rojo C, Cobelas MA (1994) Population dynamics of Limnothrix redekei, Oscillatoria lanceaeformis, Planktothrix agardhii and Pseudanabaena limnetica (cyanobacteria) in shallow hypertrophic lake (Spain). Hydrobiologia 275(276):165–171CrossRefGoogle Scholar
  17. Schirmer A, Mathew AR, Li X, Popova E, Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562CrossRefPubMedGoogle Scholar
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tanoi T, Kawachi M, Watanabe MM (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23:25–33CrossRefGoogle Scholar
  20. Whiteman P (1973) Quantitative measurements of Alcian Blue-glycosaminoglycan complexes. Biochem J 131:343–350CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Takuya Sugawara
    • 1
  • Mariko Chinzei
    • 1
  • Setsuko Numano
    • 1
  • Chifumi Kitazaki
    • 1
  • Munehiko Asayama
    • 1
    • 2
    • 3
  1. 1.Laboratory of Molecular Genetics, College of AgricultureIbaraki UniversityIbarakiJapan
  2. 2.Japan Science and Technology Agency (JST)Precursory Research for Embryonic Science and Technology (PRESTO)SaitamaJapan
  3. 3.United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations