Biotechnology Letters

, Volume 40, Issue 4, pp 679–687 | Cite as

Non-capsulated mutants of a chemical-producing Klebsiella pneumoniae strain

Original Research Paper
  • 89 Downloads

Abstract

Objectives

To investigate the outcomes of capsule lost on cell transformation efficiency and chemicals (1,3-propanediol, 2,3-butanediol, and 2-ketogluconic acid) production by Klebsiella pneumoniae.

Results

The cps gene cluster showed low sequence homology with pathogenic strains. The wza is a highly conserved gene in the cps cluster that encodes an outer membrane protein. A non-capsulated mutant was constructed by deletion of wza. Phenotype studies demonstrated that non-capsulated cells were less buoyant and easy to sediment. The transformation efficiency of the non-capsulated mutant reached 6.4 × 105 CFU μg−1 DNA, which is 10 times higher than that of the wild strain. 52.2 g 1,3-propanediol L−1, 30.7 g 2,3-butanediol L−1, and 175.9 g 2-ketogluconic acid L−1 were produced by non-capsulated mutants, which were 10–40% lower compared to wild strain. Furthermore, viscosities of the three fermentation broths decreased to approximately 1.3 cP from the range of 1.8–2.2 cP.

Conclusions

Non-capsulated K. pneumoniae mutants should allay concerns regarding biological safety, improve transformation efficiency, lower viscosity, and subsequently ameliorate the financial burden of the downstream process of chemicals production.

Keywords

2,3-Butanediol Capsule 2-Ketogluconic acid Klebsiella pneumoniae 1,3-Propanediol 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21576279, 20906076).

References

  1. Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M (1995) Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 177:1788–1796CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arasu MV, Kumar V, Ashok S, Song H, Rathnasingh C, Lee HJ, Seung D, Park S (2011) Isolation and characterization of the new Klebsiella pneumoniae J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation. Biotechnolo Bioproce Eng 16:1134–1143CrossRefGoogle Scholar
  3. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, Decre D (2013) wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 51:4073–4078CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chuang YP, Fang CT, Lai SY, Chang SC, Wang JT (2006) Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193:645–654CrossRefPubMedGoogle Scholar
  5. Dean JA (1999) Lange's handbook of chemistry, 15th edn. McGraw-Hill, IncGoogle Scholar
  6. Fournet-Fayard S, Joly B, Forestier C (1995) Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. J Microbiol Methods 24:49–54CrossRefGoogle Scholar
  7. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141CrossRefPubMedPubMedCentralGoogle Scholar
  8. Guo NN, Zheng ZM, Mai YL, Liu HJ, Liu DH (2010) Consequences of cps mutation of Klebsiella pneumoniae on 1,3-propanediol fermentation. Appl Microbiol Biot 86:701–707CrossRefGoogle Scholar
  9. Hao J, Xu F, Liu H, Liu D (2006) Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biot 81:102–108CrossRefGoogle Scholar
  10. Hao J, Lin R, Zheng Z, Liu H, Liu D (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J Microb Biot 24:1731–1740CrossRefGoogle Scholar
  11. Ho JY, Lin TL, Li CY, Lee A, Cheng AN, Chen MC, Wu SH, Wang JT, Li TL, Tsai MD (2011) Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044. PLoS ONE 6:e21664CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lai YC, Peng HL, Chang HY (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788–800CrossRefPubMedPubMedCentralGoogle Scholar
  13. Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, Tsai FC, Keynan Y, Wang JT (2008) Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46:2231–2240CrossRefPubMedPubMedCentralGoogle Scholar
  14. Rahn A, Drummelsmith J, Whitfield C (1999) Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 181:2307–2313PubMedPubMedCentralGoogle Scholar
  15. Rathnasingh C, Kim DK, Song H, Lee HJ, Do Seung, Park S (2012) Isolation and characterization of a new mucoid-free Klebsiella pneumoniae strain for 2,3-butanediol production. Afr J Biotechnol 11:11252–11261Google Scholar
  16. Regue M, Hita B, Pique N, Izquierdo L, Merino S, Fresno S, Benedi VJ, Tomas JM (2004) A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 72:54–61CrossRefPubMedPubMedCentralGoogle Scholar
  17. Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257CrossRefPubMedPubMedCentralGoogle Scholar
  18. Struve C, Bojer M, Nielsen EM, Hansen DS, Krogfelt KA (2005) Investigation of the putative virulence gene magA in a worldwide collection of 495 Klebsiella isolates: magA is restricted to the gene cluster of Klebsiella pneumoniae capsule serotype K1. J Med Microbiol 54:1111–1113CrossRefPubMedGoogle Scholar
  19. Van RR, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotech 12:208–211CrossRefGoogle Scholar
  20. Wei D, Wang M, Shi JP, Hao J (2012) Red recombinase assisted gene replacement in Klebsiella pneumoniae. J Ind Microbiol Biot 39:1219–1226CrossRefGoogle Scholar
  21. Wei D, Xu J, Shi J, Liu P, Hao J (2013) 2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. J Ind Microbiol Biot 40:561–570CrossRefGoogle Scholar
  22. Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1, 3-propanediol and 2, 3-butanediol. Appl Microbiol Biot 78:917–926CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lab of Biorefinery, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Life Science and TechnologyShanghaiTech UniversityShanghaiPeople’s Republic of China

Personalised recommendations