Advertisement

Biotechnology Letters

, Volume 40, Issue 4, pp 729–735 | Cite as

Stress influenced the aerotolerance of Lactobacillus rhamnosus hsryfm 1301

  • Chenchen Zhang
  • Jingyu Lu
  • Duo Yang
  • Xia Chen
  • Yujun Huang
  • Ruixia Gu
Original Research Paper
  • 137 Downloads

Abstract

Objective

To investigate the aerotolerance of Lactobacillus rhamnosus hsryfm 1301 and its influencing factors.

Results

The growth rate of L. rhamnosus hsryfm 1301 weakened noticeably when the concentration of supplemented H2O2 reached 1 mM, and only 2% of all L. rhamnosus hsryfm 1301 cells survived in MRS broth supplemented with 2 mM H2O2 for 1 h. After pretreatment with 0.5 mM H2O2, the surviving cells of L. rhamnosus hsryfm 1301 in the presence of 5 mM H2O2 for 1 h increased from 3.7 to 7.8 log CFU. Acid stress, osmotic stress, and heat stress at 46 °C also enhanced its aerotolerance, while heat stress at 50 °C reduced the tolerance of L. rhamnosus hsryfm 1301 to oxidative stress. Moreover, treatment with 0.5 mM H2O2 increased the heat stress tolerance of L. rhamnosus hsryfm 1301 by approximately 150-fold.

Conclusions

Lactobacillus rhamnosus hsryfm 1301 possesses a stress-inducible defense system against oxidative stress, and the cross-adaptation to different stresses is a promising target to increase the stress tolerance of L. rhamnosus hsryfm 1301 during probiotic food and starter culture production.

Keywords

Aerotolerance Cross-adaptation Inducible Lactobacillus rhamnosus 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31571855), Major Projects of the Natural Sciences in Universities of Jiangsu Province (16KJA550002) and the Science and Technology Innovation Fund of Yangzhou University (2017CXJ108).

References

  1. An H, Zhai Z, Yin S, Luo Y, Han B, Hao Y (2011) Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus. J Agric Food Chem 59:3851–3856CrossRefPubMedGoogle Scholar
  2. Chen D et al (2015) Effect of Lactobacillus rhamnosus hsryfm 1301 on the gut microbiota and lipid metabolism in rats fed a high-fat diet. J Microbiol Biotechnol 25:687–695CrossRefPubMedGoogle Scholar
  3. Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264CrossRefPubMedGoogle Scholar
  4. Huang R, Pan M, Wan C, Shah NP, Tao X, Wei H (2016) Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress. J Dairy Sci 99:1002–1010CrossRefPubMedGoogle Scholar
  5. Kankainen M et al (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198CrossRefPubMedPubMedCentralGoogle Scholar
  6. Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925CrossRefPubMedPubMedCentralGoogle Scholar
  7. Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ (2007) Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 6:29CrossRefPubMedPubMedCentralGoogle Scholar
  8. Serrazanetti DI, Gottardi D, Montanari C, Gianotti A (2013) Dynamic stresses of lactic acid bacteria associated to fermentation processes. In: Kongo M (ed) Lactic acid bacteria—R & D for food, health and livestock purposes. In Tech, London, pp 539–570Google Scholar
  9. Sieuwerts S, de Bok FA, Mols E, de Vos WM, Vlieg JE (2008) A simple and fast method for determining colony forming units. Lett Appl Microbiol 47:275–278CrossRefPubMedGoogle Scholar
  10. Thibessard A, Fernandez A, Gintz B, Leblond-Bourget N, Decaris B (2001) Hydrogen peroxide effects on Streptococcus thermophilus CNRZ368 cell viability. Res Microbiol 152:593–596CrossRefPubMedGoogle Scholar
  11. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216CrossRefPubMedGoogle Scholar
  12. Waśko A, Polakberecka M, Gustaw W (2013) Increased viability of probiotic Lactobacillus rhamnosus after osmotic stress. Acta Aliment 42:520–528CrossRefGoogle Scholar
  13. Zhang YW, Tiwari MK, Gao H, Dhiman SS, Jeya M, Lee JK (2012) Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. Enzyme Microb Technol 50:255–262CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Chenchen Zhang
    • 1
    • 2
  • Jingyu Lu
    • 1
    • 2
  • Duo Yang
    • 1
    • 2
  • Xia Chen
    • 1
    • 2
  • Yujun Huang
    • 1
    • 2
  • Ruixia Gu
    • 1
    • 2
  1. 1.College of Food Science and EngineeringYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Jiangsu Provincial Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouPeople’s Republic of China

Personalised recommendations