Advertisement

Biotechnology Letters

, Volume 40, Issue 3, pp 569–575 | Cite as

From mesophilic to thermophilic conditions: one-step temperature increase improves the methane production of a granular sludge treating agroindustrial effluents

  • Ivonne Figueroa-González
  • Gloria Moreno
  • Julián Carrillo-Reyes
  • Arturo Sánchez
  • Guillermo Quijano
  • Germán Buitrón
Original Research Paper

Abstract

Objectives

To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor.

Results

One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8–2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2–2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 °C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions.

Conclusions

More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.

Keywords

Anaerobic digestion Biokinetic parameters Biomethane potential Granular sludge Thermophilic conditions 

Notes

Acknowledgements

This work was supported by “Fondo de Sustentabilidad Energética CONACYT – SENER (Mexico)”, through the project Mexican Bioenergy Innovation Centre, Bioalcohols Cluster (249564). The authors thank the technical support of Jaime Pérez. G. Quijano acknowledges the support from CONACYT through the CÁTEDRAS program (Researcher ID 1535, Project 265).

References

  1. Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects - a review. Environ Rev 18:255–278CrossRefGoogle Scholar
  2. Angelidaki I, Alves M, Bolzonella D et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934CrossRefPubMedGoogle Scholar
  3. APHA (2005) Standard methods for examination of water and wastewater, 21st edn. APHA, AWWA, WPCR, New YorkGoogle Scholar
  4. Appels L, Degreve J, Van der Bruggen B et al (2010) Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol 101:5743–5748CrossRefPubMedGoogle Scholar
  5. Cardeña R, Moreno G, Bakonyi P et al (2017) Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem Eng J 307:948–954CrossRefGoogle Scholar
  6. de la Rubia MA, Romero LI, Sales D et al (2005) Temperature Conversion (Mesophilic to Thermophilic) of Municipal Sludge Digestion. AIChE J 51:2581–2586CrossRefGoogle Scholar
  7. Díaz I, Figueroa-González I, Miguel JA et al (2016) Enhancing the biomethane potential of liquid dairy cow manure by addition of solid manure fractions. Biotechnol Lett 38:2097–2102CrossRefPubMedGoogle Scholar
  8. Ferraz-Júnior ADN, Koyama MH, Araújo-Júnior MM et al (2016) Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew Energy 89:245–252CrossRefGoogle Scholar
  9. Kan X, Yao Z, Zhang J et al (2017) Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment. Bioresour Technol 228:77–88CrossRefPubMedGoogle Scholar
  10. Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568CrossRefPubMedGoogle Scholar
  11. Lee DY, Ebie Y, Xu KQ et al (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47CrossRefPubMedGoogle Scholar
  12. Liu Y, Tay JH (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563CrossRefPubMedGoogle Scholar
  13. Ojeda F, Bakonyi P, Buitrón G (2017) Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external loop. Bioresour Technol 245:1294–1298CrossRefPubMedGoogle Scholar
  14. Tian Z, Zhang Y, Li Y et al (2015) Rapid establishment of thermophilic anaerobic microbial community during the one-step start up of thermophilic anaerobic digestion from a mesophilic digester. Water Res 69:9–19CrossRefPubMedGoogle Scholar
  15. van Lier JB, Grolle KCF, Stams AJM et al (1992) Start-up of a thermophilic upflow anaerobic sludge bed (UASB) reactor with mesophilic granular sludge. Appl Microbiol Biotechnol 37:130–135CrossRefPubMedGoogle Scholar
  16. Veiga MC, Jain MK, Wu WM et al (1997) Composition and role of extracellular polymers in methanogenic granules. Appl Environ Microbiol 63:403–407PubMedPubMedCentralGoogle Scholar
  17. Zacharof MP (2017) Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste Biomass Valori 8:1011–1025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica JuriquillaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  2. 2.CONACYT - Instituto de Ingeniería, Unidad Académica JuriquillaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Bioenergy Futures Laboratory, Advanced Engineering UnitCentro de Investigación y Estudios Avanzados del IPNZapopanMéxico

Personalised recommendations