Haloarchaea: worth exploring for their biotechnological potential

Abstract

Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.

This is a preview of subscription content, log in to check access.

References

  1. Akolkar AV, Desai AJ (2010) Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1 (1). Res Microbiol 161:355–362

    CAS  Article  PubMed  Google Scholar 

  2. Akolkar AV, Deshpande GM, Raval KN, Durai D, Nerurkar AS, Desai AJ (2008) Organic solvent tolerance of Halobacterium sp. SP1 (1) and its extracellular protease. J Basic Microbiol 48:421–425

    CAS  Article  PubMed  Google Scholar 

  3. Akolkar A, Bharambe N, Trivedi S, Desai A (2009) Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1 (1). Lett Appl Microbiol 48:77–83

    CAS  Article  PubMed  Google Scholar 

  4. Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1 (1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109:44–53

    CAS  PubMed  Google Scholar 

  5. Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102–105

    CAS  Article  PubMed  Google Scholar 

  6. Antón J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54:2381–2386

    PubMed  PubMed Central  Google Scholar 

  7. Bajpai B, Chaudhary M, Saxena J (2015) Production and characterization of α-amylase from an extremely halophilic archaeon, Haloferax sp. HA10. Food Technol Biotech 53:11–17

    CAS  Article  Google Scholar 

  8. Barnhart DH, Koek WD, Juchem T, Hampp N, Coupland JM, Halliwell NA (2004) Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements. Meas Sci Technol 15:639–646

    CAS  Article  Google Scholar 

  9. Benvegnu T, Lemiègre L, Cammas-Marion S (2009) New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat Drug Deliv Formul 3:206–220

    CAS  Article  PubMed  Google Scholar 

  10. Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song QW, Schmidt E, Stuart JA, Seetharaman S, Wise KJ (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J Phys Chem B 103:10746–10766

    CAS  Article  Google Scholar 

  11. Bonfá MR, Grossman MJ, Mellado E, Durrant LR (2004) Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical O2 demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  Google Scholar 

  12. Cai L, Zhao D, Hou J, Wu J, Cai S, Dassarma P, Xiang H (2012) Cellular and organellar membrane-associated proteins in haloarchaea: perspectives on the physiological significance and biotechnological applications. Sci China Life Sci 55:404–414

    CAS  Article  PubMed  Google Scholar 

  13. Camacho RM, Mateos JC, González-Reynoso O, Prado LA, Córdova J (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Indust Microbiol Biotechnol 36:901–909

    CAS  Article  Google Scholar 

  14. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126:159–166

    CAS  Article  PubMed  Google Scholar 

  15. Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Proc Biochem 41:2289–2296

    CAS  Article  Google Scholar 

  16. Cyplik P, Grajek W, Marecik R, Króliczak P, Dembczyński R (2007) Application of a membrane bioreactor to denitrification of brine. Desalination 207:134–143

    CAS  Article  Google Scholar 

  17. DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1–10

    Google Scholar 

  18. De Castro RE, Maupin-Furlow JA, Giménez MI, Seitz MK, Sánchez JJ (2006) Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 30:17–35

    Article  PubMed  Google Scholar 

  19. Del Campo MM, Camacho RM, Mateos-Díaz JC, Müller-Santos M, Córdova J, Rodríguez JA (2015) Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea. Extremophiles 19:1121–1132

    Article  Google Scholar 

  20. Dincer AR, Kargi F (2001) Performance of rotating biological disc system treating saline wastewater. Proc Biochem 36:901–906

    CAS  Article  Google Scholar 

  21. Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly (hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Edn 17:1425–1438

    CAS  Article  Google Scholar 

  22. Draper JL, Rehm BH (2012) Engineering bacteria to manufacture functionalized polyester beads. Bioengineered 3:203–208

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9:85–89

    CAS  Article  PubMed  Google Scholar 

  24. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    CAS  Article  PubMed  Google Scholar 

  25. Hampp N, Oesterhelt D (2008) Bacteriorhodopsin and its potential in technical applications. Protein Science Encyclopedia. Wiley, Weinheim

  26. Kapdan IK, Erten B (2007) Anaerobic treatment of saline wastewater by Halanaerobium lacusrosei. Proc Biochem 42:449–453

    CAS  Article  Google Scholar 

  27. Kargi F, Dinçer AR (2000) Use of halophilic bacteria in biological treatment of saline wastewater by fed-batch operation. Water Environ Res 72:170–174

    CAS  Article  Google Scholar 

  28. Kargi F, Uygur A (1996) Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria. Environ Technol 17:325–330

    CAS  Article  Google Scholar 

  29. Kim J, Dordick JS (1997) Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 55:471–479

    CAS  Article  PubMed  Google Scholar 

  30. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    CAS  Article  PubMed  Google Scholar 

  31. Knoblauch C, Griep M, Friedrich C (2014) Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters. Sensors 14:19731–19766

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar S, Grewal J, Sadaf A, Hemamalini R, Khare SK (2016) Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2:1–26

    Article  Google Scholar 

  33. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E (2002) Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration. Archaea 1:105–111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Martínez-Espinosa RM, Zafrilla B, Camacho M, Bonete MJ (2007) Nitrate and nitrite removal from salted water by Haloferax mediterranei. Biocatal Biotransform 25:295–300

    Article  Google Scholar 

  35. Morais MG, Martins VG, Steffens D, Pranke P, da Costa JA (2014) Biological applications of nanobiotechnology. J Nanosci Nanotechnol 14:1007–1017

    Article  PubMed  Google Scholar 

  36. Muangsuwan W, Ruangsuj P, Chaichanachaicharn P, Yasawong M (2015) A novel nucleic lateral flow assay for screening of PHA-producing haloarchaea. J Microbiol Meth 116:8–14

    CAS  Article  Google Scholar 

  37. Namwong S, Tanasupawat S, Visessanguan W, Kudo T, Itoh T (2007) Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 57:2199–2203

    CAS  Article  PubMed  Google Scholar 

  38. Nicolaus B, Lama L, Esposito E, Manca MC, Improta R, Bellitti MR, Duckworth AW, Grant WD, Gambacorta A (1999) Haloarcula spp able to biosynthesize exo-and endopolymers. J Indust Microbiol Biotechnol 23:489–496

    CAS  Article  Google Scholar 

  39. Obayashi A, Hiraoka N, Kita K, Nakajima H, Shuzo T (1988) US Patent 4: 724,209, US Cl. 435/199

  40. Omri A, Agnew BJ, Patel GB (2003) Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol 22:9–23

    CAS  Article  PubMed  Google Scholar 

  41. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 3:825–834

    Article  Google Scholar 

  42. Ovchinnikov YA, Abdulaev NG, Feigina MY, Kiselev AV, Lobanov NA (1979) The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett 100:219–224

    CAS  Article  PubMed  Google Scholar 

  43. Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Indust Microbiol Biotechnol 36:105–110

    CAS  Article  Google Scholar 

  44. Patel GB, Zhou H, Ponce A, Chen W (2007) Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 25:8622–8636

    CAS  Article  PubMed  Google Scholar 

  45. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. doi:10.1155/2011/693253

    PubMed  PubMed Central  Google Scholar 

  46. Rodriguez-Valera F, Lillo JG (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Lett 103:181–186

    CAS  Article  Google Scholar 

  47. Ruiz DM, Iannuci NB, Cascone O, De Castro RE (2010) Peptide synthesis catalysed by a haloalkaliphilic serine protease from the archaeon Natrialba magadii (Nep). Lett Appl Microbiol 51:691–696

    CAS  Article  PubMed  Google Scholar 

  48. Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, del Monaco G, Morana A (2016) Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int J Biol Macromol 92:174–184

    CAS  Article  PubMed  Google Scholar 

  49. Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021

    CAS  Article  PubMed  Google Scholar 

  50. Sleytr UB, Schuster B, Egelseer EM, Pum D (2014) S-layers: principles and applications. FEMS Microbiol Rev 38:823–864

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Srivastava P, Braganca J, Ramanan SR, Kowshik M (2014) Green synthesis of silver nanoparticles by haloarchaeon Halococcus salifodinae BK6. Adv Mat Res 938:236–241

    Google Scholar 

  52. Stan-Lotter H, Doppler E, Jarosch M, Radax C, Gruber C, Inatomi KI (1999) Isolation of a chymotrypsinogen B-like enzyme from the archaeon Natronomonas pharaonis and other halobacteria. Extremophiles 3:153–1661

    CAS  Article  PubMed  Google Scholar 

  53. Stuart ES, Morshed F, Sremac M, DasSarma S (2001) Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol 88:119–128

    CAS  Article  PubMed  Google Scholar 

  54. Stuart ES, Morshed F, Sremac M, DasSarma S (2004) Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J Biotechnol 114:225–237

    CAS  Article  PubMed  Google Scholar 

  55. Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides–a perception. J Basic Microbiol 47:103–117

    Article  Google Scholar 

  56. Tapingkae W, Tanasupawat S, Itoh T, Parkin KL, Benjakul S, Visessanguan W, Valyasevi R (2008) Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 58:2378–2383

    CAS  Article  PubMed  Google Scholar 

  57. Thongthai C, McGenity TJ, Suntinanalert P, Grant WD (1992) Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla). Lett Appl Microbiol 14:111–114

    Article  Google Scholar 

  58. Tokunaga H, Arakawa T, Tokunaga M (2008) Engineering of halophilic enzymes: Two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17:1603–1610

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Vsevolodov NN, Dyukova TV (1994) Retinal-protein complexes as optoelectronic components. Trends Biotechnol 12:81–88

    CAS  Article  PubMed  Google Scholar 

  60. Wagner NL, Greco JA, Ranaghan MJ, Birge RR (2013) Directed evolution of bacteriorhodopsin for applications in bioelectronics. J R Soc Interface 10:20130197

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang C, Chen G, Wei X, Guo Z, Tian J, Wang X, Zhang G, Song QW (2005) Optical novelty filter using bacteriorhodopsin film. Opt Lett 30:81–83

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Dr. Aparna Singh would like to acknowledge Department of Science and Technology, Government of India, for financial assistance under Women Scientist (WOS-A) scheme (SR/WOS-ALS-135912014 (C&G) Dated 05/08/15).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aparna Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, A.K. Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 39, 1793–1800 (2017). https://doi.org/10.1007/s10529-017-2434-y

Download citation

Keywords

  • Applications
  • Enzymes
  • Haloarchaea
  • Nanobiotechnology