Advertisement

Biotechnology Letters

, Volume 39, Issue 12, pp 1793–1800 | Cite as

Haloarchaea: worth exploring for their biotechnological potential

Review

Abstract

Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.

Keywords

Applications Enzymes Haloarchaea Nanobiotechnology 

Notes

Acknowledgement

Dr. Aparna Singh would like to acknowledge Department of Science and Technology, Government of India, for financial assistance under Women Scientist (WOS-A) scheme (SR/WOS-ALS-135912014 (C&G) Dated 05/08/15).

References

  1. Akolkar AV, Desai AJ (2010) Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1 (1). Res Microbiol 161:355–362CrossRefPubMedGoogle Scholar
  2. Akolkar AV, Deshpande GM, Raval KN, Durai D, Nerurkar AS, Desai AJ (2008) Organic solvent tolerance of Halobacterium sp. SP1 (1) and its extracellular protease. J Basic Microbiol 48:421–425CrossRefPubMedGoogle Scholar
  3. Akolkar A, Bharambe N, Trivedi S, Desai A (2009) Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1 (1). Lett Appl Microbiol 48:77–83CrossRefPubMedGoogle Scholar
  4. Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1 (1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109:44–53PubMedGoogle Scholar
  5. Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102–105CrossRefPubMedGoogle Scholar
  6. Antón J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54:2381–2386PubMedPubMedCentralGoogle Scholar
  7. Bajpai B, Chaudhary M, Saxena J (2015) Production and characterization of α-amylase from an extremely halophilic archaeon, Haloferax sp. HA10. Food Technol Biotech 53:11–17CrossRefGoogle Scholar
  8. Barnhart DH, Koek WD, Juchem T, Hampp N, Coupland JM, Halliwell NA (2004) Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements. Meas Sci Technol 15:639–646CrossRefGoogle Scholar
  9. Benvegnu T, Lemiègre L, Cammas-Marion S (2009) New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat Drug Deliv Formul 3:206–220CrossRefPubMedGoogle Scholar
  10. Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song QW, Schmidt E, Stuart JA, Seetharaman S, Wise KJ (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J Phys Chem B 103:10746–10766CrossRefGoogle Scholar
  11. Bonfá MR, Grossman MJ, Mellado E, Durrant LR (2004) Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical O2 demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676CrossRefGoogle Scholar
  12. Cai L, Zhao D, Hou J, Wu J, Cai S, Dassarma P, Xiang H (2012) Cellular and organellar membrane-associated proteins in haloarchaea: perspectives on the physiological significance and biotechnological applications. Sci China Life Sci 55:404–414CrossRefPubMedGoogle Scholar
  13. Camacho RM, Mateos JC, González-Reynoso O, Prado LA, Córdova J (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Indust Microbiol Biotechnol 36:901–909CrossRefGoogle Scholar
  14. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126:159–166CrossRefPubMedGoogle Scholar
  15. Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Proc Biochem 41:2289–2296CrossRefGoogle Scholar
  16. Cyplik P, Grajek W, Marecik R, Króliczak P, Dembczyński R (2007) Application of a membrane bioreactor to denitrification of brine. Desalination 207:134–143CrossRefGoogle Scholar
  17. DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1–10Google Scholar
  18. De Castro RE, Maupin-Furlow JA, Giménez MI, Seitz MK, Sánchez JJ (2006) Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 30:17–35CrossRefPubMedGoogle Scholar
  19. Del Campo MM, Camacho RM, Mateos-Díaz JC, Müller-Santos M, Córdova J, Rodríguez JA (2015) Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea. Extremophiles 19:1121–1132CrossRefGoogle Scholar
  20. Dincer AR, Kargi F (2001) Performance of rotating biological disc system treating saline wastewater. Proc Biochem 36:901–906CrossRefGoogle Scholar
  21. Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly (hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Edn 17:1425–1438CrossRefGoogle Scholar
  22. Draper JL, Rehm BH (2012) Engineering bacteria to manufacture functionalized polyester beads. Bioengineered 3:203–208CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9:85–89CrossRefPubMedGoogle Scholar
  24. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776CrossRefPubMedGoogle Scholar
  25. Hampp N, Oesterhelt D (2008) Bacteriorhodopsin and its potential in technical applications. Protein Science Encyclopedia. Wiley, WeinheimGoogle Scholar
  26. Kapdan IK, Erten B (2007) Anaerobic treatment of saline wastewater by Halanaerobium lacusrosei. Proc Biochem 42:449–453CrossRefGoogle Scholar
  27. Kargi F, Dinçer AR (2000) Use of halophilic bacteria in biological treatment of saline wastewater by fed-batch operation. Water Environ Res 72:170–174CrossRefGoogle Scholar
  28. Kargi F, Uygur A (1996) Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria. Environ Technol 17:325–330CrossRefGoogle Scholar
  29. Kim J, Dordick JS (1997) Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 55:471–479CrossRefPubMedGoogle Scholar
  30. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRefPubMedGoogle Scholar
  31. Knoblauch C, Griep M, Friedrich C (2014) Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters. Sensors 14:19731–19766CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kumar S, Grewal J, Sadaf A, Hemamalini R, Khare SK (2016) Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2:1–26CrossRefGoogle Scholar
  33. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E (2002) Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration. Archaea 1:105–111CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martínez-Espinosa RM, Zafrilla B, Camacho M, Bonete MJ (2007) Nitrate and nitrite removal from salted water by Haloferax mediterranei. Biocatal Biotransform 25:295–300CrossRefGoogle Scholar
  35. Morais MG, Martins VG, Steffens D, Pranke P, da Costa JA (2014) Biological applications of nanobiotechnology. J Nanosci Nanotechnol 14:1007–1017CrossRefPubMedGoogle Scholar
  36. Muangsuwan W, Ruangsuj P, Chaichanachaicharn P, Yasawong M (2015) A novel nucleic lateral flow assay for screening of PHA-producing haloarchaea. J Microbiol Meth 116:8–14CrossRefGoogle Scholar
  37. Namwong S, Tanasupawat S, Visessanguan W, Kudo T, Itoh T (2007) Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 57:2199–2203CrossRefPubMedGoogle Scholar
  38. Nicolaus B, Lama L, Esposito E, Manca MC, Improta R, Bellitti MR, Duckworth AW, Grant WD, Gambacorta A (1999) Haloarcula spp able to biosynthesize exo-and endopolymers. J Indust Microbiol Biotechnol 23:489–496CrossRefGoogle Scholar
  39. Obayashi A, Hiraoka N, Kita K, Nakajima H, Shuzo T (1988) US Patent 4: 724,209, US Cl. 435/199Google Scholar
  40. Omri A, Agnew BJ, Patel GB (2003) Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol 22:9–23CrossRefPubMedGoogle Scholar
  41. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 3:825–834CrossRefGoogle Scholar
  42. Ovchinnikov YA, Abdulaev NG, Feigina MY, Kiselev AV, Lobanov NA (1979) The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett 100:219–224CrossRefPubMedGoogle Scholar
  43. Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Indust Microbiol Biotechnol 36:105–110CrossRefGoogle Scholar
  44. Patel GB, Zhou H, Ponce A, Chen W (2007) Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 25:8622–8636CrossRefPubMedGoogle Scholar
  45. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. doi: 10.1155/2011/693253 PubMedPubMedCentralGoogle Scholar
  46. Rodriguez-Valera F, Lillo JG (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Lett 103:181–186CrossRefGoogle Scholar
  47. Ruiz DM, Iannuci NB, Cascone O, De Castro RE (2010) Peptide synthesis catalysed by a haloalkaliphilic serine protease from the archaeon Natrialba magadii (Nep). Lett Appl Microbiol 51:691–696CrossRefPubMedGoogle Scholar
  48. Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, del Monaco G, Morana A (2016) Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int J Biol Macromol 92:174–184CrossRefPubMedGoogle Scholar
  49. Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021CrossRefPubMedGoogle Scholar
  50. Sleytr UB, Schuster B, Egelseer EM, Pum D (2014) S-layers: principles and applications. FEMS Microbiol Rev 38:823–864CrossRefPubMedPubMedCentralGoogle Scholar
  51. Srivastava P, Braganca J, Ramanan SR, Kowshik M (2014) Green synthesis of silver nanoparticles by haloarchaeon Halococcus salifodinae BK6. Adv Mat Res 938:236–241Google Scholar
  52. Stan-Lotter H, Doppler E, Jarosch M, Radax C, Gruber C, Inatomi KI (1999) Isolation of a chymotrypsinogen B-like enzyme from the archaeon Natronomonas pharaonis and other halobacteria. Extremophiles 3:153–1661CrossRefPubMedGoogle Scholar
  53. Stuart ES, Morshed F, Sremac M, DasSarma S (2001) Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol 88:119–128CrossRefPubMedGoogle Scholar
  54. Stuart ES, Morshed F, Sremac M, DasSarma S (2004) Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J Biotechnol 114:225–237CrossRefPubMedGoogle Scholar
  55. Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides–a perception. J Basic Microbiol 47:103–117CrossRefGoogle Scholar
  56. Tapingkae W, Tanasupawat S, Itoh T, Parkin KL, Benjakul S, Visessanguan W, Valyasevi R (2008) Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 58:2378–2383CrossRefPubMedGoogle Scholar
  57. Thongthai C, McGenity TJ, Suntinanalert P, Grant WD (1992) Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla). Lett Appl Microbiol 14:111–114CrossRefGoogle Scholar
  58. Tokunaga H, Arakawa T, Tokunaga M (2008) Engineering of halophilic enzymes: Two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17:1603–1610CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vsevolodov NN, Dyukova TV (1994) Retinal-protein complexes as optoelectronic components. Trends Biotechnol 12:81–88CrossRefPubMedGoogle Scholar
  60. Wagner NL, Greco JA, Ranaghan MJ, Birge RR (2013) Directed evolution of bacteriorhodopsin for applications in bioelectronics. J R Soc Interface 10:20130197CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang C, Chen G, Wei X, Guo Z, Tian J, Wang X, Zhang G, Song QW (2005) Optical novelty filter using bacteriorhodopsin film. Opt Lett 30:81–83CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Biotechnology Centre, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia
  2. 2.Department of BiotechnologyShree M & N. Virani Science CollegeRajkotIndia

Personalised recommendations