Biotechnology Letters

, Volume 39, Issue 12, pp 1779–1791 | Cite as

Basic leucine zipper domain transcription factors: the vanguards in plant immunity

  • Ali Noman
  • Zhiqin Liu
  • Muhammad Aqeel
  • Madiha Zainab
  • Muhammad Ifnan Khan
  • Ansar Hussain
  • Muhammad Furqan Ashraf
  • Xia Li
  • Yahong Weng
  • Shuilin He
Review
  • 379 Downloads

Abstract

Regulation of spatio-temporal expression patterns of stress tolerance associated plant genes is an essential component of the stress responses. Eukaryotes assign a large amount of their genome to transcription with multiple transcription factors (TFs). Often, these transcription factors fit into outsized gene groups which, in several cases, exclusively belong to plants. Basic leucine zipper domain (bZIP) transcription factors regulate vital processes in plants and animals. In plants, bZIPs are implicated in numerous fundamental processes like seed development, energy balance, and responses to abiotic or biotic stresses. Systematic analysis of the information obtained over the last two decades disclosed a constitutive role of bZIPs against biotic stress. bZIP TFs are vital players in plant innate immunity due to their ability to regulate genes associated with PAMP-triggered immunity, effector-triggered immunity, and hormonal signaling networks. Expression analysis of studied bZIP genes suggests that exploration and functional characterization of novel bZIP TFs in planta is helpful in improving crop resistance against pathogens and environmental stresses. Our review focuses on major advancements in bZIP TFs and plant responses against different pathogens. The integration of genomics information with the functional studies provides new insights into the regulation of plant defense mechanisms and engineering crops with improved resistance to invading pathogens. Conclusively, succinct functions of bZIPs as positive or negative regulator mediate resistance to the plant pathogens and lay a foundation for understanding associated genes and TFs regulating different pathways. Moreover, bZIP TFs may offer a comprehensive transgenic gizmo for engineering disease resistance in plant breeding programs.

Keywords

Basal defense bZIP Gene regulation Pathogenesis Plant growth 

References

  1. Agarwal P, Reddy MP, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38:3883–3896PubMedCrossRefGoogle Scholar
  2. Ali Q, Haider MZ, Iftikhar W, Jamil S, Javed MT, Noman A, Iqbal M, Perveen R (2016) Drought tolerance potential of Vigna mungo L. lines as deciphered by modulated growth, antioxidant defense, and nutrient acquisition patterns. Braz J Bot 39:801–812CrossRefGoogle Scholar
  3. Ali Q, Javed MT, Noman A, Haider MZ, Waseem M, Iqbal N, Waseem M, Shah MS, Shahzad F, Perveen R (2017) Assessment of drought tolerance in mung bean cultivars/lines as depicted by the activities of germination enzymes, seedling’s antioxidative potential and nutrient acquisition. Arch Agron Soil Sci 63:1–9CrossRefGoogle Scholar
  4. Alves MS, Dadalto SP, Goncalves AB, De Souza GB, Barros VA, Fietto LG (2013) Plant bZIP transcription factors responsive to pathogens: a review. Int J Mol Sci 14:7815–7828PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alves MS, Dadalto SP, Gonçalves AB, de Souza GB, Barros VA, Fietto LG (2014) Transcription factor functional protein–protein interactions in plant defense responses. Proteomes 2:85–106PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baek JH, Park JA, Kim JM, Oh JM, Park SM, Kim DH (2014) Functional analysis of a tannic-acid-inducible and hypoviral-regulated small heat-shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica. Mol Plant-Microbe Interact 27:56–65PubMedCrossRefGoogle Scholar
  7. Blanco F, Garreton V, Frey N, Dominguez C, Perez-Acle T, van der Straeten D, Jordana X, Holuigue L (2005) Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol Biol 59:927–944PubMedCrossRefGoogle Scholar
  8. Blanco F, Garreton BF, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L (2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70:79–102PubMedCrossRefGoogle Scholar
  9. Caarls L, Pieterse CM, Van Wees SC (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170PubMedPubMedCentralCrossRefGoogle Scholar
  10. Catinot J, Huang JB, Huang PY, Tseng MY, Chen YL, Gu SY, Lo WS, Wang LC, Chen YR, Zimmerli L (2015) Ethylene response factor 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate and ethylene-responsive defence genes. Plant Cell Environ 38:2721–2734PubMedCrossRefGoogle Scholar
  11. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113PubMedCrossRefGoogle Scholar
  13. Chisholm ST, Coaker G, Day B, Stakawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814PubMedCrossRefGoogle Scholar
  14. Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200PubMedCrossRefGoogle Scholar
  16. Correa LGG (2004) Ana´liseFilogene´tica de Fatores de Transcric¸a˜obZIPemAngiospermas (Phylogenetic analyses of bZIP transcription factors in angiosperms) [dissertation] Universida de Estadual de Campinas, Campinas, BrazilGoogle Scholar
  17. Correa LG, Riaño-Pachón DM, Guerra Schrago C, Vicentini dos Santos R, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3:e2944PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ 36:757–774PubMedCrossRefGoogle Scholar
  19. Datta R, Kumar D, Sultana A, Bhattacharyya D, Chattopadhyay S (2015) Glutathione regulates ACC synthase transcription via WRKY33 and ACC oxidase by modulating mRNA stability to induce ethylene synthesis during stress. Plant Physiol 169:2963–2981PubMedPubMedCentralGoogle Scholar
  20. Deslandes L, Rivas S (2011) The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal Behav 6:42–48PubMedPubMedCentralCrossRefGoogle Scholar
  21. Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dröge-Laser W, Kaiser A, Lindsay WP, Halkier BA, Loake GJ, Doerner P, Dixon R, Lamb C (1997) Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J 16:726–738PubMedPubMedCentralCrossRefGoogle Scholar
  23. Du Z, Chen A, Chen W, Liao Q, Zhang H, Bao Y, Roossinck MJ, Carr JP (2014) Nuclear–cytoplasmic partitioning of cucumber mosaic virus protein 2b determines the balance between its roles as a virulence determinant and an RNA-silencing suppressor. J Virol 88:5228–5241PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to SA-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fitzgerald HA, Canlas PE, Chern MS, Ronald PC (2005) Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. Plant J 43:335–347PubMedCrossRefGoogle Scholar
  26. Foley RC, Grossman C, Ellis JG, Llewellyn DJ, Dennis ES, Peacock WJ, Singh KB (1993) Isolation of a maize bZIP protein subfamily: candidates for the ocs-element transcription factor. Plant J 3:669–679PubMedCrossRefGoogle Scholar
  27. Froidurea S, Canonnea J, Daniela X, Jauneaub A, Brièrec C, Robya D, Rivasa S (2010) AtsPLA2-α nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. PNAS 107(34):15281–15286CrossRefGoogle Scholar
  28. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12:901–915PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gamboa-Meléndez H, Apolonio I, Huerta H, Judelson S (2013) bZIP Transcription Factors in the oomycete Phytophthora infestans with novel DNA-Binding Domains are involved in defense against oxidative stress. Eukaryot Cell 12(10):1403–1412PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566CrossRefGoogle Scholar
  31. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  32. Hu W, Yang H, Yan Y, Wei Y, Tie W, Ding Z, Jiao Z, Ming P, Li K (2016) Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep 6:22783PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437PubMedCrossRefGoogle Scholar
  34. Islam W, Zhang J, Adnan M, Noman A, Zainab M, Jian W (2017) Plant virus ecology: a glimpse of recent accomplishments. App Eco Environ Res 15:691–705CrossRefGoogle Scholar
  35. Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20:3107–3121PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jakoby M, Weisshaar MJB, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2006) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111CrossRefGoogle Scholar
  37. Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by anNAC (NAMATAF1,2-CUC2) transcription factor attenuates ABA signaling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880PubMedCrossRefGoogle Scholar
  38. Jiang Y, Yu D (2016) The WRKY57 transcription factor affects the expression of Jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiol 171:2771–2782PubMedPubMedCentralGoogle Scholar
  39. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  40. Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, Chaban C, Holt BF, Merkle T, Schäfer E, Harter K, Dangl JL (2006a) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25:4400–4411PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kaminaka H, Nake C, Epple P, Dittgen J, Schutze K, Chaban C, Holt BF 3rd, Merkle T, Schäfer E, Harter K, Dangl JL (2006b) bZIP10- LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25:4400–4411PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320PubMedPubMedCentralCrossRefGoogle Scholar
  43. Karlowski WM, Hirsch AM (2003) The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development. Plant Mol Biol 52:121–133PubMedCrossRefGoogle Scholar
  44. Kegler C, Lenk I, Krawczyk S, Scholz R, Gatz C (2004) Functional characterization of tobacco transcription factor TGA2.1. Plant Mol Biol 55:153–164PubMedCrossRefGoogle Scholar
  45. Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32:151–163PubMedCrossRefGoogle Scholar
  47. Kim DS, Hwang BK (2012) The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J 72:843–855PubMedCrossRefGoogle Scholar
  48. Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PDT, Hong JC, Gassmann W (2014) The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J 78:978–989PubMedCrossRefGoogle Scholar
  49. Kuhlmann M, Horvay K, Stathmann A, Heinekamp T, Fischer U, Böttner S, Dröge-Laser W (2003a) The alpha-helical D1 domain of the bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1, and is essential for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem 278:8786–8794PubMedCrossRefGoogle Scholar
  50. Kuhlmann M, Horvay K, Stathmann A, Heinekamp T, Fischer U, Böttner S, Dröge-Laser W (2003b) The alpha-helical D1 domain of the bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1, and is essential for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem 278:8786–8794PubMedCrossRefGoogle Scholar
  51. Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY, Yun D-J, Mengiste T (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5:3064PubMedCrossRefGoogle Scholar
  52. Lara-Rojas F, Sanchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80:436–454PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233PubMedCrossRefGoogle Scholar
  54. Lee SJ, Lee MY, Yi SY, Oh SK, Choi SH, Her NH, Choi D, Min BW, Yang SG, Harn CH (2002a) PPI1: a novel pathogen-induced basic region-leucine zipper (bZIP) transcription factor from pepper. Mol Plant Microbe Interact 15:540–548PubMedCrossRefGoogle Scholar
  55. Lee SJ, Lee MY, Yi SY, Oh SK, Choi SH, Her NH, Choi D, Min BW, Yang SG, Harn CH (2002b) PPI1: a novel pathogen-induced basic region-leucine zipper (bZIP) transcription factor from pepper. Mol Plant Microbe Interact 15(6):540–548PubMedCrossRefGoogle Scholar
  56. Lee S, Kim SY, Chung E, Joung YH, Pai HS, Hur CG, Choi D (2004) EST and microarray analyses of pathogen-responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycine). Funct Integr Genom 4:196–205CrossRefGoogle Scholar
  57. Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006a) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225PubMedCrossRefGoogle Scholar
  58. Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006b) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225PubMedCrossRefGoogle Scholar
  59. Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM (2015) Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. Plant Cell 27:3425–3438PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S (2009a) Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. Plant Cell 21:429–441PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S (2009b) Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. Plant Cell 21:429–441PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li D, Fuyou F, Huijuan Z, Fengming S (2015) Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genom 16:771CrossRefGoogle Scholar
  63. Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240PubMedCrossRefGoogle Scholar
  64. Lim CW, Baek W, Lim S, Han SW, Lee SC (2015) Expression and functional roles of the pepper pathogen–induced bZIP Transcription factor CabZIP2 in enhanced disease resistance to bacterial pathogen infection. Mol Plant-Microbe Interact 28:825–833PubMedCrossRefGoogle Scholar
  65. Lindermayr C, Sell S, Müller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51:897–909PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liu J-X, Srivastava R, Howell SH (2008) Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ 31:1735–1743PubMedCrossRefGoogle Scholar
  68. Liu R, Lü B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010) Thirty-seven transcription factor genes differentially respond to a hairpin protein and affect resistance to the green peach aphid in Arabidopsis. J Biol Sci 35:435–450Google Scholar
  69. Liu C, Wu Y, Wang X (2012a) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169PubMedCrossRefGoogle Scholar
  70. Liu C, Wu Y, Wang X (2012b) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169PubMedCrossRefGoogle Scholar
  71. Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE (2015) Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 4:e07295PubMedPubMedCentralGoogle Scholar
  72. Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X (2016) Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun 7:13099PubMedPubMedCentralCrossRefGoogle Scholar
  73. Llorca CM, Potschin M, Zentgraf U (2014) bZIPs and WRKYs: two large transcrip tion factor families executing two different functional strategies. Front Plant Sci 5:169PubMedPubMedCentralCrossRefGoogle Scholar
  74. Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466–472PubMedCrossRefGoogle Scholar
  75. Lopes MA, Hora BT Jr, Dias CV, Santos GC, Gramacho KP, Cascardo JC, Gesteira AS, Micheli F (2010) Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae). Genet Mol Res 9:1279–1297PubMedCrossRefGoogle Scholar
  76. Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, Weiste C, Valerio C, Dietrich K, Kirchler T, Nägele T, Vicente Carbajosa J, Hanson J, Baena-González E, Chaban C, Weckwerth W, Dröge-Laser W, Teige M (2015) SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 11:4Google Scholar
  77. Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830PubMedPubMedCentralCrossRefGoogle Scholar
  78. Memelink J (2009) Regulation of gene expression by jasmonate homones. Phytochemistry 70:1560–1570PubMedCrossRefGoogle Scholar
  79. Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR (2010) Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol 154:1492–1504PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630PubMedCrossRefGoogle Scholar
  81. Nieva C, Busk PK, Dominguez-Puigjaner E, Lumbreras V, Testillano PS, Risueño MC, Pagès M (2005) Isolation and functional characterization of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol 58:899–914PubMedCrossRefGoogle Scholar
  82. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350PubMedPubMedCentralCrossRefGoogle Scholar
  83. Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res 24:10068–10082CrossRefGoogle Scholar
  84. Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H (2017a) Biotechnological advancements for improving floral attributes in ornamental plants. Front Plant Sci 8:530PubMedPubMedCentralCrossRefGoogle Scholar
  85. Noman A, Fahad S, Aqeel M, Ali U, Amanullah Anwer S, Baloch SK, Zainab M (2017b) miRNAs: major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 39:685–700PubMedCrossRefGoogle Scholar
  86. Oh SK, Lee S, Yu SH, Choi D (2005) Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta 222:876–887PubMedCrossRefGoogle Scholar
  87. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  88. Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009a) OsTGAP1 a bZIP transcription factor coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284:26510–26518PubMedPubMedCentralCrossRefGoogle Scholar
  89. Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009b) OsTGAP1, abZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284:26510–26518PubMedPubMedCentralCrossRefGoogle Scholar
  90. Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208PubMedCrossRefGoogle Scholar
  91. Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trend Plant Sci 18:402–411CrossRefGoogle Scholar
  92. Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol 28:489–521CrossRefGoogle Scholar
  93. Pontier D, Miao ZH, Lam E (2001) Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J27:529–538Google Scholar
  94. Ram H, Chattopadhyay S (2012) Molecular interaction of bZIP domains of GBF1, HY5 and HYH in Arabidopsis seedling development. Plant Signal Behav 8:e22703PubMedPubMedCentralCrossRefGoogle Scholar
  95. Resende MLV, Salgado SML, Chaves ZM (2003) Reactive oxygen species on plant defense responses to pathogens. Fitopatol Bras 28:123–130CrossRefGoogle Scholar
  96. Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X (2015) Post translational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 18:169–182PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sato F, Katajima S, Koyama T, Yamada Y (1996) Ethylene-induced gene expression of osmotin-like protein a neutral isoform of tobacco PR-5 is mediated by the AGCCGCC cis-sequence. Plant Cell Physiol 37:249–255PubMedCrossRefGoogle Scholar
  98. Schiermeyer A, Thurow C, Gatz C (2003) Tobacco bZIP factor TGA10 is a novel member of the TGA family of transcription factors. Plant Mol Biol 51:817–829PubMedCrossRefGoogle Scholar
  99. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial Microbe. Plant Biol 11:90–96PubMedCrossRefGoogle Scholar
  100. Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483PubMedCrossRefGoogle Scholar
  101. Shah J (2003) The salicylic acid loop in plant defence. Curr Opin Plant Biol 6:365–371PubMedCrossRefGoogle Scholar
  102. Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, Scheel D, Lee J (2016) Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana. Front Plant Sci 7:61PubMedPubMedCentralCrossRefGoogle Scholar
  103. Shen H, Cao K, Wang X (2007) A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem Biophys Res Commun 362:425–430PubMedCrossRefGoogle Scholar
  104. Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Lin W, Wang R, Yu H, Mou S, Hussain A, Cheng W, Cai H, He L, Guan D, Wu Y, He S (2016a) Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. J Exp Bot 67:2439–2451PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Lin W, Wang R, Yu H, Mou S, Hussain A, Cheng W, Cai H, He L, Guan D, Wu Y, He S (2016b) Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. J Exp Bot 67:2439–2451PubMedPubMedCentralCrossRefGoogle Scholar
  106. Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436PubMedCrossRefGoogle Scholar
  107. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sun L, Zhang H, Li D, Huang L, Hong Y, Ding XS (2013) Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magna porthegrisea. Plant Mol Biol 81(41–56):10Google Scholar
  109. Tak H, Mhatre M (2012a) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 250:333–345PubMedCrossRefGoogle Scholar
  110. Tak H, Mhatre M (2012b) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 250:333–345PubMedCrossRefGoogle Scholar
  111. Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tateda C, Ozaki R, Onodera Y, Takahashi Y, Yamaguchi K, Berberich T, Koizumi N, Kusano T (2008) NtbZIP60, an endoplasmic reticulum-localized transcription factor, plays a role in the defense response against bacterial pathogens in Nicotiana tabacum. J Plant Res 121:603–611PubMedCrossRefGoogle Scholar
  113. Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C (2005a) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 44:100–113PubMedCrossRefGoogle Scholar
  114. Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C (2005b) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 44:100–113PubMedCrossRefGoogle Scholar
  115. Tian C, Li J, Glass NL (2011) Exploring the bZIP transcription factor regulatory network in Neurospora crassa. Microbiology 157:747–759PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tsugama D, Liu S, Takano T (2012) A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis. Plant Physiol 159:144–155PubMedPubMedCentralCrossRefGoogle Scholar
  117. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang J, Benedito V, Hofer JMI, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549PubMedPubMedCentralCrossRefGoogle Scholar
  118. Uquillas C, Letelier I, Blanco F, Jordana X, Holuigue L (2004) NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol Plant Microbe Interact 17:34–42PubMedCrossRefGoogle Scholar
  119. Ustun S, Bartetzko V, Bornke F (2013) The Xanthomonascampestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog 9:e1003427PubMedPubMedCentralCrossRefGoogle Scholar
  120. vanVerk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995CrossRefGoogle Scholar
  121. vanVerk MC, Bol JF, Linthorst HJ (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11:p89CrossRefGoogle Scholar
  122. Vincentz M, Bandeira-Kobarg C, Gauer L, Schlogl P, Leite A (2003) Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein. J Mol Evol 56:105–116PubMedCrossRefGoogle Scholar
  123. Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, Zhou X, Kuai B (2015) TCP transcription factors are critical for the coordinated regulation of Isochorismate synthase 1 expression in Arabidopsis thaliana. Plant J 82:151–162PubMedCrossRefGoogle Scholar
  124. Wang L, Hongli C, Wenjun Q, Lina Y, Xinyuan H, Nana L, Yajun Y, Xinchao W (2017) Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis. Ann Bot 119:1195–1209PubMedCrossRefGoogle Scholar
  125. Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476PubMedPubMedCentralCrossRefGoogle Scholar
  126. Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Gläßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JD, Mayer KF, Loren Ver, van Themaat E, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P (2014) Convergent targeting of a common host proteinnetwork by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–375PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, Krull M, Matys V, Michae H, Ohnhäuser R, Prüß M, Schacherer F, Thiele S, Urbach S (2001) The transfac system on gene expression regulation. Nucleic Acid Res 29:281–283PubMedPubMedCentralCrossRefGoogle Scholar
  128. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahlia as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yoshida K, Wakamatsu S, Sakuta M (2008) Characterization of SBZ1 a soybean bZIP protein that binds to the chalcone synthase gene promoter. Plant Biotechnol 25:131–140CrossRefGoogle Scholar
  130. Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5:831–840PubMedCrossRefGoogle Scholar
  131. Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2 TGA5 and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhang Y, Zhang G, Xia N, Wang XJ, Huang LL, Kang ZS (2008) Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 73:88–94CrossRefGoogle Scholar
  133. Zhang N, Liu D, Zheng W, He H, Ji B, Han Q, Ge F, Chen C (2014) A bZIP transcription factor, LrbZIP1, is involved in Lilium regale Wilson defense responses against Fusarium oxysporum f. sp. Lilii. Genes Genom 36:789CrossRefGoogle Scholar
  134. Zhang L, Zhang L, Xia C, Zhao G, Liu J, Jia J, Kong X (2015) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant 153:538–554PubMedCrossRefGoogle Scholar
  135. Zhang H, Hong Y, Huang L, Li D, Song F (2016) Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Sci Rep 6:30251PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zhou YL, Xu MR, Zhao MF, Xie XW, Zhu LH, Fu BY, Li ZK (2010) Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen Xanthomonas oryzae pv oryzicola. BMC Genom 1:11–78Google Scholar
  137. Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T (2014) CYCLINDEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase dependent and independent functions in Arabidopsis. Plant Cell 26:4149–4170PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Grassland Agro-Ecosystems, School of Life ScienceLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  4. 4.National Education Minister Key Laboratory for Plant Genetic Improvement and Comprehensive Utilization, College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China

Personalised recommendations