Biotechnology Letters

, Volume 39, Issue 12, pp 1765–1777 | Cite as

Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks

Review
  • 338 Downloads

Abstract

Heavy reliance on petroleum-based products drives continuous exploitation of fossil fuels, and results in serious environmental and climate problems. To address such an issue, there is a shift from petroleum sources to renewable ones. Biochemical conversion via fermentation is a primary platform for converting renewable sources to biofuels and bulk chemicals. In order to provide cost-competitive alternatives, it is imperative to develop efficient, cost-saving, and robust fermentation processes. Non-sterile fermentation offers several benefits compared to sterile fermentation, including elimination of sterility, reduced maintenance requirements, relatively simple bioreactor design, and simplified operation. Thus, cost effectiveness of non-sterile fermentation makes it a practical platform for low cost, large volume production of biofuels and bulk chemicals. Many approaches have been developed to conduct non-sterile fermentation without sacrificing the yields and productivities of fermentation products. This review focuses on the strategies for conducting non-sterile fermentation. The challenges facing non-sterile fermentation are also discussed.

Keywords

Biomass Microbial products Non-sterile fermentation Renewable sources Starvation Thermophiles 

References

  1. Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2013) Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Adv 3:437–8445CrossRefGoogle Scholar
  2. Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci Total Environ 532:112–126CrossRefPubMedGoogle Scholar
  3. Albarracín W, Sánchez IC, Grau R, Barat JM (2011) Salt in food processing; usage and reduction: a review. Int J Food Sci Technol 46:1329–1336CrossRefGoogle Scholar
  4. Andrykovitch G, Marx I (1988) Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol 54:1061–1062PubMedPubMedCentralGoogle Scholar
  5. Aquarone E (1960) Penicillin and tetracycline as contamination control agents in alcoholic fermentation of sugar cane molasses. Appl Microbiol 8:263–268PubMedPubMedCentralGoogle Scholar
  6. Arslan NP, Aydogan MN, Taskin M (2016) Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose—positive and cold-adapted Yarrowia lipolytica B9. J Biotechnol 231:32–39CrossRefPubMedGoogle Scholar
  7. Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750CrossRefPubMedGoogle Scholar
  8. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  9. Berovic M, Legisa M (2007) Citric acid production. Biotechnol Annu Rev 13:303–343CrossRefPubMedGoogle Scholar
  10. Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995CrossRefGoogle Scholar
  11. Cahn F (1935) Citric acid fermentation on solid materials. Ind Eng Chem 27:201–204CrossRefGoogle Scholar
  12. Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas G-JE, Zeng A-P (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91:101–112CrossRefPubMedGoogle Scholar
  13. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefPubMedGoogle Scholar
  14. Chen W-H, Chen Y-C, Lin J-G (2013) Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour Technol 135:262–268CrossRefPubMedGoogle Scholar
  15. Chookaew T, O-Thong S, Prasertsan P (2014) Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int J Hydrogen Energy 39:9580–9587CrossRefGoogle Scholar
  16. Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93:2669–2680CrossRefPubMedGoogle Scholar
  17. Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Marine drugs 13:1925–1965CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deindoerfer FH (1957) Calculation of heat sterilization times for fermentation media. Appl Microbiol 5:221PubMedPubMedCentralGoogle Scholar
  19. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400CrossRefPubMedGoogle Scholar
  20. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549CrossRefPubMedGoogle Scholar
  21. Gao D, Zeng Y, Wen X, Qian Y (2008) Competition strategies for the incubation of white rot fungi under non-sterile conditions. Process Biochem 43:937–944CrossRefGoogle Scholar
  22. Gao Z, Ma Y, Wang Q, Zhang M, Wang J, Liu Y (2016) Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresour Technol 218:373–379CrossRefPubMedGoogle Scholar
  23. Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10:S20CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao ZK (2013) Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels 6:1CrossRefGoogle Scholar
  25. Hu J, Zhang Z, Lin Y, Zhao S, Mei Y, Liang Y, Peng N (2015) High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour Technol 182:251–257CrossRefPubMedGoogle Scholar
  26. Hynes SH, Kjarsgaard DM, Thomas KC, Ingledew WM (1997) Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. J Ind Microbiol Biotechnol 18:284–291CrossRefPubMedGoogle Scholar
  27. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559CrossRefGoogle Scholar
  28. Jiang X, Xue Y, Wang A, Wang L, Zhang G, Zeng Q, Yu B, Ma Y (2013) Efficient production of polymer-grade l-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresour Technol 143:665–668CrossRefPubMedGoogle Scholar
  29. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534CrossRefPubMedGoogle Scholar
  30. Kataeva I, Foston MB, Yang S-J, Pattathil S, Biswal AK, Poole Ii FL, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C, Zeng Y, Tschaplinski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskas AJ, Ding S-Y, Kelly RM, Hahn MG, Adams MWW (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6:2186–2195CrossRefGoogle Scholar
  31. Kernan T, Majumdar S, Li X, Guan J, West AC, Banta S (2016) Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Biotechnol Bioeng 113:189–197CrossRefPubMedGoogle Scholar
  32. Kim J-W, Rainina EI, Efremenko E, Engler CR, Wild JR (1997) Degradation of thiodiglycol, the hydrolysis product of sulfur mustard, with bacteria immobilized within poly(vinyl) alcohol cryogels. Biotechnol Lett 19:1067–1071CrossRefGoogle Scholar
  33. Kivistö A, Santala V, Karp M (2013) Non-sterile process for biohydrogen and 1,3-propanediol production from raw glycerol. Int J Hydrogen Energy 38:11749–11755CrossRefGoogle Scholar
  34. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397CrossRefGoogle Scholar
  35. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577CrossRefGoogle Scholar
  36. Larsen J (2013) Non-sterile fermentation of bioethanol. US Patent No. 8,496,980. 30 Jul. 2013Google Scholar
  37. Leidig E, Prüsse U, Vorlop K-D, Winter J (1999) Biotransformation of Poly R-478 by continuous cultures of PVAL-encapsulated Trametes versicolor under non-sterile conditions. Bioprocess Eng 21:5–12Google Scholar
  38. Li T, Chen X, Qu Q, Chen J, Chen GQ (2014) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511CrossRefPubMedGoogle Scholar
  39. Li X, de Toledo RA, Wang S, Shim H (2015) Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition. New Biotechnol 32:282–289CrossRefGoogle Scholar
  40. Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C, Zhao ZK (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188CrossRefPubMedGoogle Scholar
  41. Lin J, Li S, Sun M, Zhang C, Yang W, Zhang Z, Li X, Li S (2014) Microbial lipid production by oleaginous yeast in d-xylose solution using a two-stage culture mode. RSC Adv 4:34944–34949CrossRefGoogle Scholar
  42. Ling J, Nip S, Shim H (2013) Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density. Bioresour Technol 146:301–309CrossRefPubMedGoogle Scholar
  43. Luterbacher JS, Martin Alonso D, Dumesic JA (2014) Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 16:4816–4838CrossRefGoogle Scholar
  44. Ma K, Ruan Z, Shui Z, Wang Y, Hu G, He M (2016) Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour Technol 203:295–302CrossRefPubMedGoogle Scholar
  45. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRefGoogle Scholar
  46. Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173CrossRefGoogle Scholar
  47. Moustogianni A, Bellou S, Triantaphyllidou IE, Aggelis G (2015) Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non-aseptic conditions. Biotechnol Bioeng 112:827–831CrossRefPubMedGoogle Scholar
  48. Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141CrossRefPubMedGoogle Scholar
  49. Ouyang J, Cai C, Chen H, Jiang T, Zheng Z (2012) Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol 168:2387–2397CrossRefPubMedGoogle Scholar
  50. Ouyang J, Ma R, Zheng Z, Cai C, Zhang M, Jiang T (2013) Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour Technol 135:475–480CrossRefPubMedGoogle Scholar
  51. Payot T, Chemaly Z, Fick M (1999) Lactic acid production by Bacillus coagulans—kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microb Technol 24:191–199CrossRefGoogle Scholar
  52. Peng L, Xie N, Guo L, Wang L, Yu B, Ma Y (2014) Efficient open fermentative production of polymer-grade l-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. Strain P38. PLoS ONE 9:e107143CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pfluger AR, Wu W-M, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol 102:9919–9926CrossRefPubMedGoogle Scholar
  54. Qin J, Zhao B, Wang X, Wang L, Yu B, Ma Y, Ma C, Tang H, Sun J, Xu P (2009) Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PloS one 4:e4359CrossRefPubMedPubMedCentralGoogle Scholar
  55. Qureshi AS, Khushk I, Ali CH, Chisti Y, Ahmad A, Majeed H (2016) Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal Agric Biotechnol 8:146–151Google Scholar
  56. Reungsang A, Sreela-or C, Plangklang P (2013) Non-sterile bio-hydrogen fermentation from food waste in a continuous stirred tank reactor (CSTR): Performance and population analysis. Int J Hydrogen Energy 38:15630–15637CrossRefGoogle Scholar
  57. Rogers PL, Lee KJ, Tribe DE (1979) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol Lett 1:165–170CrossRefGoogle Scholar
  58. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Appl Microbiol Biotechnol 63:239–248CrossRefPubMedGoogle Scholar
  59. Rosenberg M, Rebroš M, Krištofíková L, Malátová K (2005) High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnol Lett 27:1943–1947CrossRefPubMedGoogle Scholar
  60. Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 7:34CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sarris D, Kotseridis Y, Linga M, Galiotou-Panayotou M, Papanikolaou S (2009) Enhanced ethanol production, volatile compound biosynthesis and fungicide removal during growth of a newly isolated Saccharomyces cerevisiae strain on enriched pasteurized grape musts. Eng Life Sci 9:29–37CrossRefGoogle Scholar
  62. Sarris D, Giannakis M, Philippoussis A, Komaitis M, Koutinas AA, Papanikolaou S (2013) Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses. J Chem Technol Biotechnol 88:958–969CrossRefGoogle Scholar
  63. Schnepf R, Yacobucci BD (2013) Renewable fuel standard (RFS): overview and issues. In: CRS report for congress, vol 40155Google Scholar
  64. Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586CrossRefPubMedGoogle Scholar
  65. Silva EM, Yang S-T (1995) Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J Biotechnol 41:59–70CrossRefGoogle Scholar
  66. Sonnleitner B, Fiechter A (1983) Advantages of using thermophiles in biotechnological processes: expectations and reality. Trends Biotechnol 1:74–80CrossRefGoogle Scholar
  67. Sun W, Xiao F, Wei Z, Cui F, Yu L, Yu S, Zhou Q (2015) Non-sterile and buffer-free bioconversion of glucose to 2-keto-gluconic acid by using Pseudomonas fluorescens AR4 free resting cells. Process Biochem 50:493–499CrossRefGoogle Scholar
  68. Sun L, Li Y, Wang L, Wang Y, Yu B (2016) Diammonium phosphate stimulates transcription of L-lactate dehydrogenase leading to increased L-lactate production in the thermotolerant Bacillus coagulans strain. Appl Microbiol Biotechnol 100:6653–6660CrossRefPubMedGoogle Scholar
  69. Tao F, Miao JY, Shi GY, Zhang KC (2005) Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem 40:183–187CrossRefGoogle Scholar
  70. Tasar OC, Erdal S, Taskin M (2016) Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int J Biol Macromol 89:428–433CrossRefPubMedGoogle Scholar
  71. Taskin M, Saghafian A, Aydogan MN, Arslan NP (2015) Microbial lipid production by cold-adapted oleaginous yeast Yarrowia lipolytica B9 in non-sterile whey medium. Biofuels Bioprod Biorefin 9:595–605CrossRefGoogle Scholar
  72. Taskin M, Ortucu S, Aydogan MN, Arslan NP (2016a) Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew Energy 99:198–204CrossRefGoogle Scholar
  73. Taskin M, Ortucu S, Unver Y, Tasar OC, Ozdemir M, Kaymak HC (2016b) Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf Environ Prot 103(Part A):136–143CrossRefGoogle Scholar
  74. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405CrossRefPubMedGoogle Scholar
  75. Tchakouteu SS, Kopsahelis N, Chatzifragkou A, Kalantzi O, Stoforos NG, Koutinas AA, Aggelis G, Papanikolaou S (2016) Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: Adaptation dynamics and lipid production. Eng Life Sci 17:237–248CrossRefGoogle Scholar
  76. Van Groenestijn J, Geelhoed J, Goorissen H, Meesters K, Stams A, Claassen P (2009) Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. Biotechnol Bioeng 102:1361–1367CrossRefPubMedGoogle Scholar
  77. Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem 41:557–561CrossRefGoogle Scholar
  78. Wang Y, Chen C, Cai D, Wang Z, Qin P, Tan T (2016) The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions. Bioresour Technol 218:1098–1105CrossRefPubMedGoogle Scholar
  79. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108CrossRefGoogle Scholar
  80. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133CrossRefPubMedGoogle Scholar
  81. Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22:344–350CrossRefPubMedGoogle Scholar
  82. Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36CrossRefGoogle Scholar
  83. Yang X, Lai Z, Lai C, Zhu M, Li S, Wang J, Wang X (2013) Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. Biotechnol Biofuels 6:124CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yang X, Jin G, Wang Y, Shen H, Zhao ZK (2015a) Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions. Bioresour Technol 193:557–562CrossRefPubMedGoogle Scholar
  85. Yang X, Zhu M, Huang X, Lin CSK, Wang J, Li S (2015b) Valorisation of mixed bakery waste in non-sterilized fermentation for l-lactic acid production by an evolved Thermoanaerobacterium sp. strain. Bioresour Technol 198:47–54CrossRefPubMedGoogle Scholar
  86. Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 132:38–44CrossRefPubMedGoogle Scholar
  87. Yen H-W, Liao Y-T, Liu YX (2015) The growth of oleaginous Rhodotorula glutinis in an airlift bioreactor on crude glycerol through a non-sterile fermentation process. Bioprocess Biosyst Eng 38:1541–1546CrossRefPubMedGoogle Scholar
  88. Zhou X, Ye L, Wu JC (2013) Efficient production of l-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Appl Microbiol Biotechnol 97:4309–4314CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of MissouriColumbiaUSA

Personalised recommendations