Advertisement

Biotechnology Letters

, Volume 39, Issue 10, pp 1471–1476 | Cite as

Genetically engineered cell lines for α1-antitrypsin expression

  • Qianqian Ji
  • Caiping Guo
  • Chen Xie
  • Yingdan Wu
  • Pei Zhang
  • Hui Li
  • Yongjun LuEmail author
Original Research Paper

Abstract

Objectives

To establish genetically modified cell lines that can produce functional α1-antitrypsin (AAT), by CRISPR/Cas9-assisted homologous recombination.

Results

α1-Antitrypsin deficiency (AATD) is a monogenic heritable disease that often results in lungs and liver damage. Current augmentation therapy is expensive and in short of supply. To develop a safer and more effective therapeutic strategy for AATD, we integrated the AAT gene (SERPINA1, NG_008290.1) into the AAVS1 locus of human cell line HEK293T and assessed the safety and efficacy of CRISPR/Cas9 on producing potential therapeutic cell lines. Cell clones obtained had the AAT gene integrated at the AAVS1 locus and secreted approx. 0.04 g/l recombinant AAT into the medium. Moreover, the secreted AAT showed an inhibitory activity that is comparable to plasma AAT.

Conclusions

CRISPR/Cas9-mediated engineering of human cells is a promising alternative for generating isogenic cell lines with consistent AAT production. This work sheds new light on the generation of therapeutic liver stem cells for AATD.

Keywords

AAVS1 locus α1-Antitrypsin deficiency CRISPR/Cas9 Homologous recombination 

Notes

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (Grant No. 2015M582465).

Supporting information

Supplementary Table 1—Primer sequences.

Supplementary Figure 1—SDS-PAGE of AAT in puromycin-resistant HEK293T cells after transfection.

Compliance with ethical standards

Conflicts of interest

The authors have no conflict of interest to declare, and no competing financial interests exist.

Supplementary material

10529_2017_2391_MOESM1_ESM.docx (562 kb)
Supplementary material 1 (DOCX 562 kb)

References

  1. Blanchard V, Liu X, Eigel S, Kaup M, Rieck S, Janciauskiene S et al (2011) N-Glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. Biotechnol Bioeng 108:2118–2128CrossRefPubMedGoogle Scholar
  2. Blanco I, Canto H, de Serres FJ, Fernandez-Bustillo E, Rodriguez MC (2004) Alpha1-antitrypsin replacement therapy controls fibromyalgia symptoms in 2 patients with PI ZZ alpha1-antitrypsin deficiency. J Rheumatol 31:2082–2085PubMedGoogle Scholar
  3. Chiuchiolo MJ, Kaminsky SM, Sondhi D, Hackett NR, Rosenberg JB, Frenk EZ et al (2013) Intrapleural administration of an AAVrh. 10 vector coding for human alpha1-antitrypsin for the treatment of alpha1-antitrypsin deficiency. Hum Gene Ther Clin Dev 24:161–173CrossRefPubMedGoogle Scholar
  4. de Serres FJ, Blanco I (2012) Prevalence of alpha1-antitrypsin deficiency alleles PI*S and PI*Z worldwide and effective screening for each of the five phenotypic classes PI*MS, PI*MZ, PI*SS, PI*SZ, and PI*ZZ: a comprehensive review. Ther Adv Respir Dis 6:277–295CrossRefPubMedGoogle Scholar
  5. DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH et al (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133–1142CrossRefPubMedPubMedCentralGoogle Scholar
  6. Feinstein G, Kupfer A, Sokolovsky M (1973) N-Acetyl-(L-Ala) 3 -p-nitroanilide as a new chromogenic substrate for elastase. Biochem Biophys Res Commun 50:1020–1026CrossRefPubMedGoogle Scholar
  7. Hansen HG, Kildegaard HF, Lee GM, Kol S (2016) Case study on human alpha1-antitrypsin: recombinant protein titers obtained by commercial ELISA kits are inaccurate. Biotechnol J 11:1648–1656CrossRefPubMedGoogle Scholar
  8. Henckaerts E, Dutheil N, Zeltner N, Kattman S, Kohlbrenner E, Ward P et al (2009) Site-specific integration of adeno-associated virus involves partial duplication of the target locus. Proc Natl Acad Sci USA 106:7571–7576CrossRefPubMedGoogle Scholar
  9. Lee KJ, Lee SM, Gil JY, Kwon O, Kim JY, Park SJ et al (2013) N-glycan analysis of human alpha1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj J 30:537–547CrossRefPubMedGoogle Scholar
  10. Ross D, Brown T, Harper R, Pamarthi M, Nixon J, Bromirski J et al (2012) Production and characterization of a novel human recombinant alpha-1-antitrypsin in PER.C6 cells. J Biotechnol 162:262–273CrossRefPubMedGoogle Scholar
  11. Smith JR, Maguire S, Davis LA, Alexander M, Yang F, Chandran S et al (2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells 26:496–504CrossRefPubMedGoogle Scholar
  12. Stoller JK, Aboussouan LS (2005) Alpha1-antitrypsin deficiency. Lancet 365:2225–2236CrossRefPubMedGoogle Scholar
  13. Wang Z, Hilder TL, van der Drift K, Sloan J, Wee K (2013) Structural characterization of recombinant alpha-1-antitrypsin expressed in a human cell line. Anal Biochem 437:20–28CrossRefPubMedGoogle Scholar
  14. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Shenzhen Weiguang Biological Products Co., Ltd.ShenzhenPeople’s Republic of China
  3. 3.Guang ZhouPeople’s Republic of China

Personalised recommendations