Skip to main content
Log in

The wound-healing effect of 7,3′,4′-trimethoxyflavone through increased levels of prostaglandin E2 by 15-hydroxyprostaglandin dehydrogenase inhibition

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To find an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) that rapidly metabolises Prostaglandin E2 (PGE2) as a mediator of wound healing, we examined seven flavonoids for this role.

Results

7,3′,4′-Trimethoxyflavone (TMF) had the lowest IC50 value of 0.34 µM for 15-PGDH inhibition but >400 µM for cytotoxicity, indicating a high therapeutic index. TMF elevated PGE2 levels in a concentration-dependent manner in both A549 lung cancer and HaCaT cells. It also significantly increased mRNA expression of multidrug resistance-associated protein 4 (MRP4) and of prostaglandin transporter (PGT) slightly in HaCaT cells. In addition, TMF facilitated in vitro wound healing in a HaCaT scratch model, which was completely inhibited by adding both 15-PGDH and NAD+ as cofactor, confirming the involvement of PGE2 in its wound healing effect.

Conclusion

TMF with a high therapeutic index can facilitate wound healing through PGE2 elevation by 15-PGDH inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agins AP, Delhagen JE (1987) Metabolism of prostaglandin E2 by human HL-60 leukemia cells. Agents Action 21:400–402

    Article  CAS  Google Scholar 

  • Cho H, Tai HH (2002) Inhibition of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by cyclooxygenase inhibitors and chemopreventive agents. Prostagland Leukot Essent Fat Acids 67:461–465

    Article  CAS  Google Scholar 

  • Cho H, Hamza A, Zhan CG, Tai HH (2005) Key NAD+ -binding residues in human 15-hydroxyprostaglandin dehydrogenase. Arch Biochem Biophys 433:447–453

    Article  CAS  PubMed  Google Scholar 

  • Ensor CM, Yang JY, Okita RT, Tai HH (1990) Cloning and sequence analysis of the cDNA for human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase. J Biol Chem 265:14888–14891

    CAS  PubMed  Google Scholar 

  • Jeong JM, Choi CH, Kang SK, Lee IH, Lee JY, Jung H (2007) Antioxidant and chemosensitizing effects of flavonoids with hydroxy and/or methoxy groups and structure-activity relationship. J Pharm Pharm Sci 10:537–546

    Article  CAS  PubMed  Google Scholar 

  • Ji XL, Jiang YX, Ren BB, Liu K, Liu G (2007) Effect of bismuth glycyrrhizate on experimental gastric ulcers and its mechanisms. Zhongguo Zhong Yao Za Zhi 32:1429–1432

    CAS  PubMed  Google Scholar 

  • Kinoshita M, Iwasaki H, Yasoshima A, Tamaki H (1993) Effects of ecabet sodium (TA-2711), a new antiulcer agent, on gastrointestinal mucosal prostanoid production and morphology in rats. Biol Pharm Bull 16:1220–1225

    Article  CAS  PubMed  Google Scholar 

  • Kleine A, Kluge S, Peskar BM (1993) Stimulation of prostaglandin biosynthesis mediates gastroprotective effect of rebamipide in rats. Dig Dis Sci 38:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Koivisto L, Jiang G, Hakkinen L, Chan B, Larjava H (2006) HaCaT keratinocyte migration is dependent on epidermal growth factor receptor signaling and glycogen synthase kinase-3alpha. Exp Cell Res 312:2791–2805

    Article  CAS  PubMed  Google Scholar 

  • Lacroix-Pepin N, Danyod G, Krishnaswamy N et al (2011) The multidrug resistance-associated protein 4 (MRP4) appears as a functional carrier of prostaglandins regulated by oxytocin in the bovine endometrium. Endocrinology 152:4993–5004

    Article  CAS  PubMed  Google Scholar 

  • Lin ZP, Zhu YL, Johnson DR et al (2008) Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 73:243–251

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Kanai N, Bao Y, Schuster VL (1996) Cloning, in vitro expression, and tissue distribution of a human prostaglandin transporter cDNA(hPGT). J Clin Investig 98:1142–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeng HJ, Lee WJ, Jin QR, Chang JE, Shim WS (2014) Upregulation of COX-2 in the lung cancer promotes overexpression of multidrug resistance protein 4 (MRP4) via PGE2-dependent pathway. Eur J Pharm Sci 62:189–196

    Article  CAS  PubMed  Google Scholar 

  • Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  • McGreevy JM, Moody FG (1980) A mechanism for prostaglandin cytoprotection. Br J Surg 67:873–876

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Tanaka M, Suwa T, Fujita A, Otomo S, Aihara H (1984) Effect of 2’-carboxymethoxy-4,4’-bis(3-methyl-2-butenyloxy)chalcone (SU-88) on prostaglandin metabolism in hog gastric mucosa. Biochem Pharmacol 33:2629–2633

    Article  CAS  PubMed  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  • Nosalova V, Machova J, Babulova A (1993) Protective action of vinpocetine against experimentally induced gastric damage in rats. Arzneimittelforschung 43:981–985

    CAS  PubMed  Google Scholar 

  • O’Brien PE, Frydman G, Holmes R, Malcontenti C, Phelan D (1990) Evaluation of putative cytoprotective properties of antiulcer drugs using quantitative histological techniques. Dig Dis Sci 35:1130–1139

    Article  PubMed  Google Scholar 

  • Parekh A, Sandulache VC, Singh T et al (2009) Prostaglandin E2 differentially regulates contraction and structural reorganization of anchored collagen gels by human adult and fetal dermal fibroblasts. Wound Repair Regen 17:88–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Reno F, Grazianetti P, Cannas M (2001) Effects of mechanical compression on hypertrophic scars: prostaglandin E2 release. Burns 27:215–218

    Article  CAS  PubMed  Google Scholar 

  • Sandulache VC, Parekh A, Li-Korotky H, Dohar JE, Hebda PA (2007) Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)-beta1-induced collagen synthesis. Wound Repair Regen 15:122–133

    Article  PubMed  Google Scholar 

  • Su WH, Cheng MH, Lee WL et al (2010) Nonsteroidal anti-inflammatory drugs for wounds: pain relief or excessive scar formation? Mediat Inflamm 2010:413238

    Article  Google Scholar 

  • Szelenyi I, Lanz R (1986) Release of cytoprotective PGE2 from cultured macrophages induced by antacids and sucralfate. Agents Actions 18:375–380

    Article  CAS  PubMed  Google Scholar 

  • Tai HH, Ensor CM, Tong M, Zhou H, Yan F (2002) Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat 68–69:483–493

    Article  PubMed  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

  • Yeh FL, Shen HD, Lin MW, Chang CY, Tai HY, Huang MH (2006) Keloid-derived fibroblasts have a diminished capacity to produce prostaglandin E2. Burns 32:299–304

    Article  PubMed  Google Scholar 

  • Zhou H, Felsen D, Sandulache VC, Amin MR, Kraus DH, Branski RC (2011) Prostaglandin (PG)E2 exhibits antifibrotic activity in vocal fold fibroblasts. Laryngoscope 121:1261–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by research fund from Chosun University in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Hee Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K.H., Karna, S., Moon, YS. et al. The wound-healing effect of 7,3′,4′-trimethoxyflavone through increased levels of prostaglandin E2 by 15-hydroxyprostaglandin dehydrogenase inhibition. Biotechnol Lett 39, 1575–1582 (2017). https://doi.org/10.1007/s10529-017-2386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2386-2

Keywords

Navigation