Skip to main content

Advertisement

Log in

Bioprinting technologies for disease modeling

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue models have propelled our understanding of diseases’ characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abaci HE, Guo ZY, Coffman A, Gillette B, Lee WH, Sia SK, Christiano AM (2016) Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv Healthc Mater 5:1800–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ASTM Standard F2792-12a (2013) Standard terminology for additive manufacturing technologies. ASTM International. https://www.astm.org/Standards/F2792.htm

  • Atala A, Kasper FK, Mikos AG (2012) Engineering complex tissues. Sci Transl Med 4:160rv12

    Article  PubMed  Google Scholar 

  • Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang K-J, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, Van Der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262

    Article  CAS  PubMed  Google Scholar 

  • Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:014101

    Article  PubMed  Google Scholar 

  • Cho D, Lee J, Jang J, Jung JW, Park JH, Pati F (2015) Organ printing. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  • Colina M, Serraa P, Fernández-Pradasa JM, Sevillab L, Morenzaa JL (2005) DNA deposition through laser induced forward transfer. Biosens Bioelectron 20:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mat 28:677–684

    Article  CAS  Google Scholar 

  • Crump SS (1992) Apparatus and method for creating three-dimensional objects. US patent (US5121329 A). https://www.google.com/patents/US5121329

  • Cui X, Boland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeForest CA, Tirrell DA (2015) A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat Mater 14:523–531

    Article  CAS  PubMed  Google Scholar 

  • Delire B, Stärkel P, Leclercq I (2015) Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J Clin Transl Hepatol 3:53–66

    Article  PubMed  PubMed Central  Google Scholar 

  • DelNero P, Song YH, Fischbach C (2013) Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective. Biomed Microdevices 15:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derby B (2008) Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem 18:5717–5721

    Article  CAS  Google Scholar 

  • Draize JH, Woodard G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharm Exp Ther 82:377–390

    CAS  Google Scholar 

  • Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaharwar AK, Arpanaei A, Andresen TL, Dolatshahi-Pirouz A (2016) 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv Mater 28:771–781

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, He Y, Fu JZ, Liu A, Ma L (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215

    Article  CAS  PubMed  Google Scholar 

  • Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering in vivo and in vitro applications. Adv Drug Deliv Rev 63:352–366

    Article  CAS  PubMed  Google Scholar 

  • Grolman JM, Zhang D, Smith AM, Moore JS, Kilian KA (2015) Rapid 3D extrusion of synthetic tumor microenvironments. Adv Mater 27:5512–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253

    Article  CAS  PubMed  Google Scholar 

  • Huang TQ, Qu X, Liu J, Chen S (2014) 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices 16:127–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US patent (US4575330 A). https://www.google.com/patents/US4575330

  • Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8:e77673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang J, Yi HG, Cho DW (2016) 3D Printed tissue models: present and future. ACS Biomater Sci Eng 2:1722–1731

    Article  CAS  Google Scholar 

  • Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW, Kwon SM, Kim PJ, Cho DW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274

    Article  CAS  PubMed  Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319

    Article  CAS  PubMed  Google Scholar 

  • Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M (2016) Nano-enabled approaches for stem cell-based cardiac tissue engineering. Adv Health Mater 5:1533–1553

    Article  CAS  Google Scholar 

  • Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120–126

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Choi JS, Kim BS, Chan Choi Y, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154

    Article  CAS  Google Scholar 

  • Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373

    Article  CAS  PubMed  Google Scholar 

  • Knowlton S, Tasoglu S (2016) A bioprinted liver-on-a-chip for drug screening applications. Trends Biotechnol 34:681–682

    Article  CAS  PubMed  Google Scholar 

  • Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33:504–513

    Article  CAS  PubMed  Google Scholar 

  • Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Abbas AK, Aster JC, Robbins SL (2013) Robbins basic pathology. Elsevier/Saunders, Philadelphia

    Google Scholar 

  • Lauschke VM, Hendriks DF, Bell CC, Andersson TB, Ingelman-Sundberg M (2016) Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29:1936–1955

    Article  CAS  PubMed  Google Scholar 

  • Lee VK, Dai G, Zou H, Yoo S (2015) Generation of 3-D glioblastoma-vascular niche using 3-D bioprinting. 41st Annual Northeast Biomedical Engineering Conference (NEBEC) 1–2

  • Ling K, Huang G, Liu J, Zhang X, Ma Y, Lu T, Xu F (2015) Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids. Engineering 1:269–274

    Article  Google Scholar 

  • Liu X, Grice JE, Lademann J, Otberg N, Trauer S, Patzelt A, Roberts MS (2011) Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br J Clin Pharmacol 72:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Lode A, Gelinsky M (2013) Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mat 2:777–783

    Article  CAS  Google Scholar 

  • Ma Z, Koo S, Finnegan MA, Loskill P, Huebsch N, Marks NC, Conklin BR, Grigoropoulos CP, Healy KE (2014) Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 35:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, Feng GS, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 113:2206–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes vreated by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8:e57741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosadegh B, Dabiri BE, Lockett MR, Derda R, Campbell P, Parker KK, Whitesides GM (2014) Three-dimensional paper-based model for cardiac ischemia. Adv Healthc Mater 3:1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  • Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101A:272–284

    Article  CAS  Google Scholar 

  • Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M (2016) Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater 41:133–146

    Article  CAS  PubMed  Google Scholar 

  • Newman ST, Zhu Z, Dhokia V, Shokrani A (2015) Process planning for additive and subtractive manufacturing technologies. CIRP Ann Manuf Technol 64:467–470

    Article  Google Scholar 

  • Nixon GA, Tyson CA, Wertz WC (1975) Interspecies comparisons of skin irritancy. Toxicol Appl Pharmacol 31:481–490

    Article  CAS  PubMed  Google Scholar 

  • Ondrus T, Kanovsky J, Novotny T, Andrsova I, Spinar J, Kala P (2013) Right ventricular myocardial infarction: from pathophysiology to prognosis. Exp Clin Cardiol 18:27–30

    PubMed  PubMed Central  Google Scholar 

  • Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21:1257–1271

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Jang J, Lee JS, Cho DW (2016) Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 13:612–621

    Article  CAS  Google Scholar 

  • Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peela N, Sam FS, Christenson W, Truong D, Watson AW, Mouneimne G, Ros R, Nikkhah M (2016) A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Unutmaz D, Ozbolat IT (2016) Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol 34:722–732

    Article  CAS  PubMed  Google Scholar 

  • Ralphe JC, De Lange WJ (2013) 3D engineered cardiac tissue models of human heart disease: learning more from our mice. Trends Cardiovasc Med 23:27–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafirstein G, Moros EG (2011) Modelling millimetre wave propagation and absorption in a high resolution skin model: the effect of sweat glands. Phys Med Biol 56:1329–1339

    Article  PubMed  Google Scholar 

  • Sharma NS, Jindal R, Mitra B, Lee S, Li L, Maguire TJ, Schloss R, Yarmush ML (2012) Perspectives on non-animal alternatives for assessing sensitization potential in allergic contact dermatitis. Cell Mol Bioeng 5:52–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skardal A, Shupe T, Atala A (2016) Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 21:1399–1411

    Article  CAS  PubMed  Google Scholar 

  • Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31:10–19

    Article  CAS  PubMed  Google Scholar 

  • Van Noort R (2012) The future of dental devices is digital. Dent Mater 28:3–12

    Article  PubMed  Google Scholar 

  • Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJA, Melchels FPW, Malda J (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:035007

    Article  PubMed  Google Scholar 

  • Wiegand C, Hipler UC (2009) Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures. Skin Pharmacol Physiol 22:74–82

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99

    Article  PubMed  Google Scholar 

  • Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109:3152–3160

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26:5864–5871

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Davoudi F, Walch P, Manbachi A, Luo X, Dell’Erba V, Miri AK, Albadawi H, Arneri A, Li X, Wang X, Dokmeci MR, Khademhosseini A, Oklu R (2016a) Bioprinted thrombosis-on-a-chip. Lab Chip 16:4097–4105

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Duchamp M, Oklu R, Ellisen LW, Langer R, Khademhosseini A (2016b) Bioprinting the cancer microenvironment. ACS Biomater Sci Eng 2:1710–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S, Sun W (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MN would like to acknowledge National Science Foundation (Award 1510700 and CAREER Award CBET 1653193). AM would like to acknowledge the National Plan for Science, Technology and Innovation (MAARIFAH)—King Abdulaziz City for Science and Technology—the Kingdom of Saudi Arabia—award number (12-MED3096-3). The authors also, acknowledge the Science and Technology Unit, King Abdulaziz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nikkhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memic, A., Navaei, A., Mirani, B. et al. Bioprinting technologies for disease modeling. Biotechnol Lett 39, 1279–1290 (2017). https://doi.org/10.1007/s10529-017-2360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2360-z

Keywords

Navigation