Biotechnology Letters

, Volume 39, Issue 7, pp 939–949 | Cite as

The lacrimal gland: development, wound repair and regeneration

  • Yupeng Yao
  • Yan Zhang


The lacrimal gland (LG) is important as it has a significant role in maintaining the stability of the microenvironment of the ocular surface. When a loss of function occurs in the LG, a significant reduction in tear production and dry eye disease (DED) may occur. A mammalian LG is a secretory gland consisting of acini and ducts. The interaction between epithelial cells and mesenchymal cells plays a major role during development and the self-restoration process of the gland. Some factors, such as fibroblast growth factor 10 and bone morphogenetic protein 7, are associated with these processes. Though several strategies for LG regeneration have been established, there is still a long way to go before there is clarity about LG stem cells. In this review, current knowledge on LG development, LG self-repair, DED and correlative regeneration therapies are summarized.


Autotransplantation Bioengineered gland Development Dry eye disease Lacrimal gland Stem cell 



This study was supported in part by a Grant from National High Technology Research and Development Program of China (No. 2014AA020702), National Natural Science Foundation of China (No. 31371390) and Ph.D. Programs Foundation of Ministry of Education of China (No. 20130171110010). We thank Sa Xiao for suggestive discussion.


  1. Ackermann P, Hetz S, Dieckow J, Schicht M, Richter A, Kruse C, Schroeder IS, Jung M, Paulsen FP (2015) Isolation and investigation of presumptive murine lacrimal gland stem cells. Investig Ophthalmol Vis Sci 56:4350–4363CrossRefGoogle Scholar
  2. Aragona P, Papa V, Micali A, Santocono M, Milazzo G (2002) Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br J Ophthalmol 86:181–184CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73CrossRefPubMedGoogle Scholar
  4. Coppes RP, Stokman MA (2011) Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis 17:143–153CrossRefPubMedGoogle Scholar
  5. Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177CrossRefPubMedPubMedCentralGoogle Scholar
  6. De La Cuadra-Blanco C, Peces-Pena MD, Merida-Velasco JR (2003) Morphogenesis of the human lacrimal gland. J Anat 203:531–536CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dean C, Ito M, Makarenkova HP, Faber SC, Lang RA (2004) Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation. Development 131:4155–4165CrossRefPubMedGoogle Scholar
  8. Dean CH, Miller LA, Smith AN, Dufort D, Lang RA, Niswander LA (2005) Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Dev Biol 286:270–286CrossRefPubMedGoogle Scholar
  9. Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86:631–637CrossRefPubMedGoogle Scholar
  10. Gromova A, Voronov DA, Yoshida M, Thotakura S, Meech R, Dartt DA, Makarenkova HP (2016) Lacrimal gland repair using progenitor cells. Stem Cells Transl Med 5:1–11CrossRefGoogle Scholar
  11. Han F, Li X, Song D, Jiang S, Xu Q, Zhang Y (2015) SCNT versus iPSCs: proteins and small molecules in reprogramming. Int J Dev Biol 59:179–186CrossRefPubMedGoogle Scholar
  12. Hann LE, Tatro JB, Sullivan DA (1989) Morphology and function of lacrimal gland acinar cells in primary culture. Investig Ophthalmol Vis Sci 30:145–158Google Scholar
  13. Hessen M, Akpek EK (2014) Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res 9:240–250PubMedPubMedCentralGoogle Scholar
  14. Hirayama M, Ogawa M, Oshima M, Sekine Y et al (2013) Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nat Commun 4:2497PubMedPubMedCentralGoogle Scholar
  15. Hirayama M, Tsubota K, Tsuji T (2015) Bioengineered lacrimal gland organ regeneration in vivo. J Funct Biomater 6:634–649CrossRefPubMedPubMedCentralGoogle Scholar
  16. Karbanova J, Missol-Kolka E, Fonseca AV, Lorra C et al (2008) The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 56:977–993CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kleckowska-Nawrot J, Dziegiel P (2008) Morphology of lacrimal gland in pig fetuses. Anat Histol Embryol 37:74–77PubMedGoogle Scholar
  18. Kobayashi S, Kawakita T, Kawashima M, Okada N, Mishima K, Saito I, Ito M, Shimmura S, Tsubota K (2012) Characterization of cultivated murine lacrimal gland epithelial cells. Mol Vis 18:1271–1277PubMedPubMedCentralGoogle Scholar
  19. Kojima T, Ishida R, Dogru M, Goto E, Matsumoto Y, Kaido M, Tsubota K (2005) The effect of autologous serum eyedrops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol 139:242–246CrossRefPubMedGoogle Scholar
  20. Lemullois M, Rossignol B, Mauduit P (1996) Immunolocalization of myoepithelial cells in isolated acini of rat exorbital lacrimal gland: cellular distribution of muscarinic receptors. Biol Cell 86:175–181CrossRefPubMedGoogle Scholar
  21. Lysy PA, Weir GC, Bonner-Weir S (2012) Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 1:150–159CrossRefPubMedPubMedCentralGoogle Scholar
  22. Macleod A, Kumar PA, Hertess I, Newing R (1990) Microvascular submandibular gland transfer; an alternative approach for total xerophthalmia. Brit J Plast Surg 43:437–439CrossRefPubMedGoogle Scholar
  23. Makarenkova HP, Ito M, Govindarajan V, Faber SC, Sun L, McMahon G, Overbeek PA, Lang RA (2000) FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development 127:2563–2572PubMedGoogle Scholar
  24. Messmer EM (2015) The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 112:71–81PubMedPubMedCentralGoogle Scholar
  25. Miralles F, Lamotte L, Couton D, Joshi RL (2006) Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol 50:17–26CrossRefPubMedGoogle Scholar
  26. Moshirfar M, Pierson K, Hanamaikai K, Santiago-Caban L, Muthappan V, Passi SF (2014) Artificial tears potpourri: a literature review. Clin Ophthalmol 8:1419–1433PubMedPubMedCentralGoogle Scholar
  27. O’Rahilly R, Müller F (1996) Human embryology & teratology. Wiley-Liss, New YorkGoogle Scholar
  28. Pan Y, Carbe C, Powers A, Zhang EE, Esko JD, Grobe K, Feng GS, Zhang X (2008) Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development 135:301–310CrossRefPubMedGoogle Scholar
  29. Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D (2009) Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr Eye Res 19:201–211CrossRefGoogle Scholar
  30. Robbins A, Kurose M, Winterson BJ, Meng ID (2012) Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents. Investig Ophthalmol Vis Sci 53:7034–7042CrossRefGoogle Scholar
  31. Roth M, Spaniol K, Kordes C, Schwarz S, Mertsch S, Haussinger D, Rotter N, Geerling G, Schrader S (2015) The influence of oxygen on the proliferative capacity and differentiation potential of lacrimal gland-derived mesenchymal stem cells. Investig Ophthalmol Vis Sci 56:4741–4752CrossRefGoogle Scholar
  32. Schechter J, Stevenson D, Chang D, Chang N, Pidgeon M, Nakamura T, Okamoto CT, Trousdale MD, Mircheff AK (2002) Growth of purified lacrimal acinar cells in Matrigel raft cultures. Exp Eye Res 74:349–360CrossRefPubMedGoogle Scholar
  33. Schechter JE, Warren DW, Mircheff AK (2010) A lacrimal gland is a lacrimal gland, but rodent’s and rabbit’s are not human. Ocular Surf 8:111–134CrossRefGoogle Scholar
  34. Scoggins CR, Meszoely IM, Wada M, Means AL, Yang L, Leach SD (2000) p53-dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas. Am J Physiol Gastrointest Liver Physiol 279:G827–G836PubMedGoogle Scholar
  35. Shatos MA, Haugaard-Kedstrom L, Hodges RR, Dartt DA (2012) Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland. Investig Ophthalmol Vis Sci 53:2749–2759CrossRefGoogle Scholar
  36. Soares EJ, Franca VP (2005) Transplantation of labial salivary glands for severe dry eye treatment. Arq Bras Oftalmol 68:481–489CrossRefPubMedGoogle Scholar
  37. Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder SC (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Investig Ophthalmol Vis Sci 42:2283–2292Google Scholar
  38. Su JZ, Cai ZG, Yu GY (2015) Microvascular autologous submandibular gland transplantation in severe cases of keratoconjunctivitis sicca. Maxillofac Plast Reconstr Surg 37:5CrossRefPubMedPubMedCentralGoogle Scholar
  39. Teven CM, Farina EM, Rivas J, Reid RR (2014) Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis 1:199–213CrossRefPubMedPubMedCentralGoogle Scholar
  40. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890CrossRefPubMedGoogle Scholar
  41. Tiwari S, Ali MJ, Balla MM, Naik MN, Honavar SG, Reddy VA, Vemuganti GK (2012) Establishing human lacrimal gland cultures with secretory function. PLoS ONE 7:e29458CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tiwari S, Ali MJ, Vemuganti GK (2014) Human lacrimal gland regeneration: perspectives and review of literature. Saudi J Ophthalmol 28:12–18CrossRefPubMedGoogle Scholar
  43. Tomita H, Tanaka K, Tanaka T, Hara A (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7:11018–11032PubMedPubMedCentralGoogle Scholar
  44. Tsau C, Ito M, Gromova A, Hoffman MP, Meech R, Makarenkova HP (2011) Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling. Development 138:3307–3317CrossRefPubMedPubMedCentralGoogle Scholar
  45. Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP (2015) Lacrimal gland inflammation deregulates extracellular matrix remodeling and alters molecular signature of epithelial stem/progenitor cells. Investig Ophthalmol Vis Sci 56:8392–8402CrossRefGoogle Scholar
  46. Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 78:983–991CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang YL, Tan Y, Satoh Y, Ono K (1995) Morphological changes of myoepithelial cells of mouse lacrimal glands during postnatal development. Histol Histopathol 10:821–827PubMedGoogle Scholar
  48. Xiao B, Wang Y, Reinach PS, Ren Y, Li J, Hua S, Lu H, Chen W (2015) Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye. PLoS ONE 10:e0115333CrossRefPubMedPubMedCentralGoogle Scholar
  49. You S, Kublin CL, Avidan O, Miyasaki D, Zoukhri D (2011a) Isolation and propagation of mesenchymal stem cells from the lacrimal gland. Invest Ophthalmol Vis Sci 52:2087–2094CrossRefPubMedPubMedCentralGoogle Scholar
  50. You S, Tariq A, Kublin CL, Zoukhri D (2011b) Detection of BrdU-label retaining cells in the lacrimal gland: implications for tissue repair. Cell Tissue Res 346:317–326CrossRefPubMedPubMedCentralGoogle Scholar
  51. You S, Avidan O, Tariq A, Ahluwalia I, Stark PC, Kublin CL, Zoukhri D (2012) Role of epithelial-mesenchymal transition in repair of the lacrimal gland after experimentally induced injury. Invest Ophthalmol Vis Sci 53:126–135CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yu GY, Zhu ZH, Mao C, Cai ZG, Zou LH, Lu L, Zhang L, Peng X, Li N, Huang Z (2004) Microvascular autologous submandibular gland transfer in severe cases of keratoconjunctivitis sicca. Int J Oral Maxillofac Surg 33:235–239CrossRefPubMedGoogle Scholar
  53. Zhou S, Schuetz JD, Bunting KD, Colapietro AM et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034CrossRefPubMedGoogle Scholar
  54. Zoukhri D (2010) Mechanisms involved in injury and repair of the murine lacrimal gland: role of programmed cell death and mesenchymal stem cells. Ocular Surf 8:60–69CrossRefGoogle Scholar
  55. Zoukhri D, Hodges RR, Byon D, Kublin CL (2002) Role of proinflammatory cytokines in the impaired lacrimation associated with autoimmune xerophthalmia. Investig Ophthalmol Vis Sci 43:1429–1436Google Scholar
  56. Zoukhri D, Macari E, Kublin CL (2007) A single injection of interleukin-1 induces reversible aqueous-tear deficiency, lacrimal gland inflammation, and acinar and ductal cell proliferation. Exp Eye Res 84:894–904CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zoukhri D, Fix A, Alroy J, Kublin CL (2008) Mechanisms of murine lacrimal gland repair after experimentally induced inflammation. Investig Ophthalmol Vis Sci 49:4399–4406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou Higher Education Mega CenterSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations