Skip to main content
Log in

Novel microbial photobioelectrochemical cell using an invasive ultramicroelectrode array and a microfluidic chamber

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To fabricate a novel microbial photobioelectrochemical cell using silicon microfabrication techniques.

Results

High-density photosynthetic cells were immobilized in a microfluidic chamber, and ultra-microelectrodes in a microtip array were inserted into the cytosolic space of the cells to directly harvest photosynthetic electrons. In this way, the microbial photobioelectrochemical cell operated without the aid of electron mediators. Both short circuit current and open circuit voltage of the microbial photobioelectrochemical cell responded to light stimuli, and recorded as high as 250 pA and 45 mV, respectively.

Conclusion

A microbial photobioelectrochemical cell was fabricated with potential use in next-generation photosynthesis-based solar cells and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chiao M, Lam KB, Lin LW (2006) Micromachined microbial and photosynthetic fuel cells. J Micromechan Microeng 16:2547–2553

    Article  CAS  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  PubMed  Google Scholar 

  • Flexer V, Mano N (2010) From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Anal Chem 82:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Furukawa Y, Moriuchi T, Morishima K (2006) Design principle and prototyping of a direct photosynthetic/metabolic biofuel cell (DPMFC). J Micromechan Microeng 16:S220–S225

    Article  CAS  Google Scholar 

  • Ha JG, Lee SK, Bai SJ, Kim YK, Park JH (2013) Conductive microtip electrode array with variable aspect ratio using combination process of reactive ion etching. J Micromechan Microeng 23(11):115009

    Article  Google Scholar 

  • Kim LH, Kim YJ, Hong H, Yang D, Han M, Yoo G, Song HW, Chae Y, Pyun JC, Grossman AR, Ryu W (2016) Patterned nanowire electrode array for direct extraction of photosynthetic electrons from multiple living algal cells. Adv Funct Mater 26:7679–7689

    Article  CAS  Google Scholar 

  • Komadina J, Walch S, Fasching R, Grossman A, Prinz FB (2008) Reversible oxidation of spinach ferredoxin at surface-modified electrodes. J Electrochem Soc 155:B1008–B1012

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trend Microbiol 14:512–518

    Article  CAS  Google Scholar 

  • Okayama S (1976) Redox potential of plastoquinone A in spinach chloroplasts. Biochim Biophys Acta 440:331–336

    Article  PubMed  Google Scholar 

  • Park JH, Song YS, Ha JG, Kim YK, Lee SK, Bai SJ (2013) Electrochemical sensing of high density photosynthetic cells using a microfluidic chip. Sens Actuator B-Chem 188:1300–1305

    Article  CAS  Google Scholar 

  • Qian F, Wang GM, Li Y (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10:4686–4691

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum M, Schroder U (2010) Photomicrobial solar and fuel cells. Electroanalysis 22:844–855

    Article  CAS  Google Scholar 

  • Rosenbaum M, Schroder U, Scholz F (2005) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68:753–756

    Article  CAS  PubMed  Google Scholar 

  • Ryu W, Bai SJ, Park JS, Huang ZB, Moseley J, Fabian T, Fasching RJ, Grossman AR, Prinz FB (2010) Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett 10:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Sekar N, Ramasamy RP (2015) Recent advances in photosynthetic energy conversion. J Photochem Photobiol C-Photochem Rev 22:19–33

    Article  CAS  Google Scholar 

  • Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trend Biotechnol 29:41–49

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government(Ministry of Science, ICT & Future Planning) (2014R1A2A1A11054042) and the Ministry of Environment under the Environment Convergence Technology Project (2012000670001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung Jai Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, JG., Song, Y.S., Jung, S. et al. Novel microbial photobioelectrochemical cell using an invasive ultramicroelectrode array and a microfluidic chamber. Biotechnol Lett 39, 849–855 (2017). https://doi.org/10.1007/s10529-017-2307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2307-4

Keywords

Navigation