Skip to main content
Log in

Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Soybean is an economically important leguminous crop. Genetic improvements of soybeans have focused on enhancement of seed and oil yield, development of varieties suited to different cropping systems, and breeding resistant/tolerant varieties for various biotic and abiotic stresses. Plant breeders have used conventional breeding techniques for the improvement of these traits in soybean. The conventional breeding process can be greatly accelerated through the application of molecular and genomic approaches. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. An overview of molecular approaches for the genetic improvement of soybean seed quality parameters, considering recent applications of marker-assisted selection and ‘omics’ research, is provided in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai-Hua S, Yin-Hua C, Zhi-Hui S et al (2014) Identification of photoperiod-regulated gene in soybean and function analysis in Nicotiana benthamiana. J Genet 93:43–51

    Article  PubMed  Google Scholar 

  • Alam I, Lee DG, Kim KH et al (2010) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35:49–62

    Article  CAS  PubMed  Google Scholar 

  • Bisen A, Khare D, Nair P et al (2015) SSR analysis of 38 genotypes of soybean [Glycine Max (L.) Merr.) genetic diversity in India. Physiol Mol Biol Plants 21:109–115

    Article  CAS  PubMed  Google Scholar 

  • BMT/13/13 (2011) SSR markers in Brazilian soybeans; working group on biochemical and molecular techniques, and DNA-profiling in particular. Thirteenth Session Brasilia, November 22–24, 2p

  • Daymann V, Senthil N, Ravnidran M et al (2009) Density analysis in selected Indian soybean using morphological and SSR markers. IJIB 5:125–129

    Google Scholar 

  • Duressa D, Soliman K, Taylor R et al (2011) Proteomic analysis of soybean roots under aluminum stress. Int J Plant Genom. doi:10.1155/2011/282531

    Google Scholar 

  • Dwiyanti MS, Ujiie A, Thuy LTB et al (2007) Genetic analysis of high a-tocopherol content in soybean seeds. Breed Sci 57:23–28

    Article  CAS  Google Scholar 

  • Dwiyanti MS, Yamada T, Sato M et al (2011) Genetic variation of g-tocopherol methyltransferase gene contributes to elevated a-tocopherol content in soybean seeds. BMC Plant Biol 11:152

    Article  CAS  PubMed Central  Google Scholar 

  • Fu Y-Bi, Ahmad Z, Diederichsen A (2015) Towards a better monitoring of seed ageing under ex situ seed conservation. Conserv Physiol. doi:10.1093/conphys/cov026

    Google Scholar 

  • Fujita Y, Venterink HO, vanBodegom PM et al (2013) Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86

    Article  CAS  PubMed  Google Scholar 

  • Funatsuki H, Ishimoto M, Suji HT et al (2006) Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed 125:195–197

    Article  CAS  Google Scholar 

  • Ge Y, Li Y, Zhu YM et al (2010) Global transcriptome profiling of wild soybean (Glycinesoja) roots under NaHCO3 treatment. BMC Plant Biol 10:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulluoglu L, Halis A, Mehmet A (2006) Effects of some plant growth regulators and nutrient complexes on pod shattering and yield losses of soybean under hot and dry conditions. J Plant Sci 5:368–372

    CAS  Google Scholar 

  • Gwata ET, Wofford DS (2013) Potential of RAPD analysis of the promiscuous nodulation trait in soybean (Glycine max L). Biol Fertil Soil 49:241–244

    Article  CAS  Google Scholar 

  • Han Z, Ku L, Zhang Z et al (2014) QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. PloS one 9:e92535

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosamani J, Arun Kumar MB, Talukdar A et al (2013) Molecular characterization and identification of candidate markers for seed longevity in soybean [Glycine max (L.) Merill]. Indian J Genet 73(1):64–71

    CAS  Google Scholar 

  • Hu Z, Zhang D, Zhang G et al (2014) Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breed Sci 63:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang EY, Song Q, Jia G et al (2014) Genome-wide association study of seed protein and oil content in soybean. BMC Genom 15:1–12

    Article  Google Scholar 

  • Hyten DL, Choi IY, Song Q et al (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Iqbal Z, Naeem R, Ashraf M et al (2015) Genetic diversity of soybean accessions using seed storage proteins. Pak J Bot 47:203–209

    CAS  Google Scholar 

  • Islam S, Mir JI, Kudesia R (2015) Evaluation of genetic diversity in Vigna radiata (L.) using protein profiling and molecular marker (RFLP). Int J Plant Breed Genet 9:238–246

    Article  Google Scholar 

  • ISTA (2012) Updates on progress towards development of DNA based approach for testing variety identity. Report by DNA working group held on 11–14 June 2012, Venlo, The Netherlands

  • Jeong N, Moon JK, Kim HS et al (2011) Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet 122:865–874

    Article  PubMed  Google Scholar 

  • Jian S, Lu WG, Wen ZX et al (2012) Analysis of protein subunit variation in the mini core collection of cultivated soybean. J Henan Agric Sci 41:42–45

    Google Scholar 

  • Khare D, Bhale MS, Raut ND et al (1996) Factors influencing germination and field emergence of soybean. JNKVV Res J 30:1–15

    Google Scholar 

  • Khare D, Bisen A, Nair P et al (2013) Genetic diversity in soybean germplasm identified by RAPD markers. AsPac J Mol Biol Biotechnol 21:121–123

    Google Scholar 

  • Ko KP, Park SK, Yang JJ et al (2013) Intake of soy products and other foods and gastric cancer risk: a prospective study. J Epidemiol 23:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y et al (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8:4766–4778

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y et al (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PloS one 7:e49522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Li W, Zhang C et al (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol 188:242–253

    Article  CAS  PubMed  Google Scholar 

  • Li L, HurM Lee JY et al (2015) A systems biology approach toward understanding seed composition in soybean. BMC Genom 16(Suppl 3):S9

    Article  Google Scholar 

  • Lin H, Rao J, Shi J et al (2014) A seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J Integr Plant Biol. doi:10.1111/jipb.12228

    Google Scholar 

  • Lira-Medeiros CF, Cardoso MA, Fernandes RA et al (2015) Analysis of genetic diversity of two mangrove species with morphological alterations in a natural environment. Diversity 7:105–117

    Article  Google Scholar 

  • Liu S, Zhou R, Tian S et al (2007) A study on subunit groups of soybean protein extracts under SDS-PAGE. J Am Oil Chem Soc 84:793–801

    Article  CAS  Google Scholar 

  • Mariela I, Castro AL, Capdevielle F (2011) Development of functional markers associated with phenotypic traits for identification in soybean. Working group on biochemical and molecular techniques, and DNA-profiling in particular. Thirteenth session Brasilia, November 22–24, 2011 BMT/13/9 2p

  • Mielewczik M, Friedli M, Kirchgessner N et al (2013) Diel leaf growth of soybean: an ovel method to analyze two-dimensional leaf expansion in high temporal resolution based on a marker tracking approach (Martrack Leaf). Plant Methods 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Mladenovic DS, Nikolic A, Peric V (2008) Cluster analysis of soybean genotypes based on RAPD markers. Proc 43rd Croatian and 3rd int symp agricul, pp 367–370, ISBN 978-953-6135-67-7, opatija, February 2008, Faculty of agronomy, Zagreb, Croatia

  • Nakamura T, Yang D, Kalaiselvi S et al (2003) Genetic analysis of net like cracking in soybean seed coats. Euphytica 133:179–184

    Article  CAS  Google Scholar 

  • Nimnual A, Romkaew J, Chukeatirote E et al (2014) Evaluation of genetic relationship among some important Japanese and Thai soybean varieties using AFLP analysis. Aust J Crop Sci 8:481–485

    CAS  Google Scholar 

  • O’Rourke J, Charlson D, Gonzalez D et al (2007) Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genom 8:476

    Article  Google Scholar 

  • Qin J, Gu F, Liu D et al (2013) Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches. Proteome Sci 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu LJ, Xing LL, Guo Y et al (2013) A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol Biol 83:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabel M, Vieira ESN, Lana UGP et al (2010) Marcadoresmoleculares micros satellites naavaliação de sementes de soma comvariaçãonacoloração do hilo. Rev Brasil Sement 32:19–25

    Article  Google Scholar 

  • Rani A, Kumar V, Verma SK et al (2007) Tocopherol content and profile of soybean: genotypic variability and correlation studies. J Am Oil Chem Soc 84:377–383

    Article  CAS  Google Scholar 

  • Sahu P, Khare D, Tripathi N et al (2012) Molecular screening for disease resistance as strategic and tactical gene pool in soybean. J Food Leg 25:200–205

    Google Scholar 

  • Sattler SE, Cahoon EB, Coughlan SJ et al (2003) Characterization of tocopherol cyclases from higher plants and cyano-bacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Bachleda N, Pham AT et al (2015) High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean. Mol Breed 35:176

    Article  Google Scholar 

  • Singh RK, Raipuria RK, Bhatia VS et al (2008) SSR markers associated with seed longevity in soybean. Seed Sci Technol 36:162–167

    Article  Google Scholar 

  • Song QJ, Marda LF, Shoemaker RC, Lark KG, Concibido VC et al (2004) A new integrated genetic linkage map of the Soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Song F, Tang DL, Wang XL et al (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromol 12:3369–3380

    Article  CAS  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50 K, a high-density genotyping array for soybean. PloS one 8:e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2015) Fingerprinting soybean germplasm and its utility in genomic research. Genetics 5:1999–2006

    Google Scholar 

  • Suzuki M, Fujino K, Nakamoto Y et al (2010) Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Mol Breed 25:407–418

    Article  CAS  Google Scholar 

  • Tardivel A, Sonah H, Belzile F et al (2014) Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach. Plant Gen 7:1–9

    Article  Google Scholar 

  • UPOV (2011) Working group on biochemical and molecular techniques, and DNA profiling in session thirteenth held at Brazil. November 22–24, BMT/13/25

  • Wang LX, Guan RX, Li YH et al (2007) Genetic diversity of chinese spring soybean germplasm revealed by SSR markers. Plant Breed 127:56–61

    Google Scholar 

  • Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

  • Ziegler G, Terauchi A, Becker A et al (2013) Ionomic screening of field-grown soybean identifies mutants with altered seed elemental composition. Plant Gen 6:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, N., Khare, D. Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review. Biotechnol Lett 38, 1645–1654 (2016). https://doi.org/10.1007/s10529-016-2154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2154-8

Keywords

Navigation