Skip to main content
Log in

Impact of transduction towards the proliferation and migration as well as the transduction efficiency of human umbilical cord-derived late endothelial progenitor cells with nine recombinant adeno-associated virus serotypes

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the transduction efficiency of human umbilical cord-derived, late endothelial progenitor cells late (HUCB-late EPCs) with nine recombinant adeno-associated virus (rAAV) serotypes and the ability of proliferation and migration of the cells after transduction.

Results

rAAV2 and rAAV6 showed a greater ability than other serotypes to transduce late EPCs (P < 0.05). After transduction, cell proliferation ability weakened (P < 0.05), but the ability of migration to stromal cell-derived factor (SDF-1) unchanged.

Conclusion

There is an advantage of choosing the optimal rAAV serotype as a gene vector to alter the biologic characteristics of late EPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JS, Wilcher R, Samulski RJ (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vector. J Virol 74:2777–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Kapturczak M, Loiler SA, Zolotukhin S, Glushakova OY, Madsen KM, Samulski RJ, Hauswirth WW, Campbell-Thompson M, Berns KI, Flotte TR, Atkinson MA, Tisher CC, Agarwal A (2005) Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther 16:235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis BL, Hirsch ML, Barker JC, Connelly JP, Porteus MH (2013) A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 10:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn JD, Hui D, Downey HD, Dunn D, Pien GC, Mingozzi F, Zhou S, High KA (2010) Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC Class I following transduction. Mol Ther 18:135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM (1996) Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 70:520–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goligorsky MS (2014) Endothelial progenitor cells: from senescence to rejuvenation. Semin Nephrol 34:365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieger JC, Samulski RJ (2012) Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 507:229–254

    Article  CAS  PubMed  Google Scholar 

  • Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1:1412–1428

    Article  CAS  PubMed  Google Scholar 

  • Halbert CL, Allen JM, Miller AD (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 75:6615–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie E, Samulski RJ (2015) Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success-a personal perspective. Hum Gene Ther 26:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildinger M, Baldi L, Stettler M, Wurm FM (2007) High-titer, serum-free production of adeno-associated virus vectors by polyethyleneimine-mediated plasmid transfection in mammalian suspension cells. Biotechnol Lett 29:1713–1721

    Article  CAS  PubMed  Google Scholar 

  • Luttun A, Carmeliet P (2003) De novo vasculogenesis in the heart. Cardiovasc Res 58:378–389

    Article  CAS  PubMed  Google Scholar 

  • Matrosovich M, Herrler G, Klenk HD (2015) Sialic acid receptors of viruses. Top Curr Chem 367:1–28

    Article  PubMed  Google Scholar 

  • Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355

    Article  CAS  PubMed  Google Scholar 

  • Nicolson SC, Samulski RJ (2014) Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 88:4132–4144

    Article  PubMed  PubMed Central  Google Scholar 

  • Odent G, Preda MB, Radu E, Rosca AM, Tutuianu R, Mitroi DN, Simionescu M, Burlacu A (2015) Combinatorial approach for improving the outcome of angiogenic therapy in ischemic tissues. Biomaterials 60:72–81

    Article  CAS  Google Scholar 

  • Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-Packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanlioglu S, Monick MM, Luleci G, Hunninghake GW, Engelhardt JF (2001) Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther 1:137–147

    Article  CAS  PubMed  Google Scholar 

  • Schuhmann NK, Pozzoli O, Sallach J, Huber A, Avitabile D, Perabo L, Rappl G, Capogrossi MC, Hallek M, Pesce M, Buning H (2010) Gene transfer into human cord blood-derived CD34(+) cells by adeno-associated viral vectors. Exp Hematol 38:707–717

    Article  CAS  PubMed  Google Scholar 

  • Shah PB, Losordo DW (2005) Non-viral vectors for gene therapy: clinical trials in cardiovascular disease. Adv Genet 54:339–361

    Article  CAS  PubMed  Google Scholar 

  • Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    Article  PubMed  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  • Xiao PJ, Samulski RJ (2012) Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J Virol 86:10462–10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HN, Park JS, Woo DG, Jeon SY, Park KH (2012) Transfection of VEGF(165) genes into endothelial progenitor cells and in vivo imaging using quantum dots in an ischemia hind limb model. Biomaterials 33:8670–8684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Deng Xiyun and Cao Jianguo for their insightful comments and careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofen Zheng.

Additional information

Zhaofei Wang and Qiang Fu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fu, Q., Cao, J. et al. Impact of transduction towards the proliferation and migration as well as the transduction efficiency of human umbilical cord-derived late endothelial progenitor cells with nine recombinant adeno-associated virus serotypes. Biotechnol Lett 38, 1073–1079 (2016). https://doi.org/10.1007/s10529-016-2082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2082-7

Keywords