Skip to main content

Biotransformation of hexavalent chromium into extracellular chromium(III) oxide nanoparticles using Schwanniomyces occidentalis

Abstract

Objectives

To demonstrate biotransformation of toxic Cr(VI) ions into Cr2O3 nanoparticles by the yeast Schwanniomyces occidentalis.

Results

Reaction mixtures containing S. occidentalis NCIM 3459 and Cr(VI) ions that were initially yellow turned green after 48 h incubation. The coloration was due to the synthesis of chromium (III) oxide nanoparticles (Cr2O3NPs). UV–Visible spectra of the reaction mixtures showed peaks at 445 and 600 nm indicating 4A2g → 4T1g and 4A2g → 4T2g transitions in Cr2O3, respectively. FTIR profiles suggested the involvement of carboxyl and amide groups in nanoparticle synthesis and stabilization. The Cr2O3NPs ranged between 10 and 60 nm. Their crystalline nature was evident from the selective area electron diffraction and X-ray diffraction patterns. Energy dispersive spectra confirmed the chemical composition of the nanoparticles. These biogenic nanoparticles could find applications in different fields.

Conclusions

S. occidentalis mediated biotransformation of toxic Cr(VI) ions into crystalline extracellular Cr2O3NPs under benign conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Annamalai K, Nair AM, Chinnaraju S, Kuppusamy S (2014) Removal of chromium from contaminated effluent and simultaneously green nanoparticle synthesis using Bacillus subtilis. Malaya J Biosci 1:13–18

    CAS  Google Scholar 

  • Anupama, Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 8:459–479

    Article  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N, Zheng Y, Li Q (2013) Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr–6. Biochem Eng J 70:166–172

    Article  CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  PubMed  Google Scholar 

  • Fedorovych D, Kszeminska H, Babjak L, Kaszycki P, Kołoczek H (2001) Hexavalent chromium stimulation of riboflavin synthesis in flavinogenic yeast. Biometals 14:23–31

    Article  CAS  PubMed  Google Scholar 

  • Horn CH, du Preez JC, Kilian SG (1992) Fermentation of grain sorghum starch by co-cultivation of Schwanniomyces occidentalis and Saccharomyces cerevisiae. Bioresour Technol 42:27–31

    Article  CAS  Google Scholar 

  • Ksheminska HP, Honchar TM, Gayda GZ (2006) Extra-cellular chromate-reducing activity of the yeast cultures. Cent Eur J Biol 1:137–139

    CAS  Google Scholar 

  • Li L, Yan ZF, Lu GQ, Zhu ZH (2006) Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction. J Phys Chem B 110:178–183

    Article  CAS  PubMed  Google Scholar 

  • Padman AJ, Henderson J, Hodgson S, Rahman PKSM (2014) Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotechnol Lett 36:2079–2084

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Lee KG, Lee SY (2015) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6904-7

    Google Scholar 

  • Ramesh C, Mohankumar K, Latha N, Ragunathan V (2012) Green synthesis of Cr2O3 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Escherichia coli. Curr Nanosci 8:603–607

    Article  CAS  Google Scholar 

  • Sallau AB, Inuwa HM, Ibrahim S, Nok AJ (2014) Isolation and properties of chromate reductase from Aspergillus niger. Int J Mod Cell Mol Biol 3:10–21

    Google Scholar 

  • Tavares KP, Caloto-Oliveira Á, Vicentini DS, Melegari SP, Matias WG, Barbosa S, Kummrow F (2014) Acute toxicity of copper and chromium oxide nanoparticles to Daphnia similis. Ecotoxicol Environ Contam 9:943–950

    Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sevinc PC, Belchik SM, Fredrickson J, Shi L, Lu HP (2013) Single-cell imaging and spectroscopic analyses of Cr(VI) reduction on the surface of bacterial cells. Langmuir 29:950–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yong P, Liu W, Zhang Z, Beauregard D, Johns ML, Macaskie LE (2015) One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction. Biotechnol Lett 37:2181–2191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PM wishes to thank the Council of Scientific and Industrial Research, India for Senior Research Fellowship. All authors thank University Grants Commission, India for support under University with Potential for Excellence Phase II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita S. Zinjarde.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohite, P.T., Kumar, A.R. & Zinjarde, S.S. Biotransformation of hexavalent chromium into extracellular chromium(III) oxide nanoparticles using Schwanniomyces occidentalis . Biotechnol Lett 38, 441–446 (2016). https://doi.org/10.1007/s10529-015-2009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-2009-8

Keywords