Skip to main content

Biofilms and human health

Abstract

A biofilm can be defined as a surface-attached (sessile) community of microorganisms embedded and growing in a self-produced matrix of extracellular polymeric substances. These biofilm communities can be found in medical, industrial and natural environments, and can also be engineered in vitro for various biotechnological applications. Biofilms play a significant role in the transmission and persistence of human disease especially for diseases associated with inert surfaces, including medical devices for internal or external use. Biofilm infections on implants or in-dwelling devices are difficult to eradicate because of their much better protection against macrophages and antibiotics, compared to free living cells, leading to severe clinical complications often with lethal outcome. Recent developments in nanotechnology have provided novel approaches to preventing and dispersing biofilm related infections and potentially providing a novel method for fighting infections that is nondrug related.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    PubMed  CAS  Article  Google Scholar 

  • Allison DG (2003) The biofilm matrix. Biofoul 19:139–150

    CAS  Article  Google Scholar 

  • Anderl JN, Zahller J, Roe F et al (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Ag Chemother 47:1251–1256

    CAS  Article  Google Scholar 

  • Anwar H, Strap JL, Chen K et al (1992) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Ag Chemother 36:1208–1214

    CAS  Article  Google Scholar 

  • Archibald L, Phillips L, Monnet D et al (1997) Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 24:211–215

    PubMed  CAS  Article  Google Scholar 

  • Atkinson S, Throup JP, Stewart GS et al (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277

    PubMed  CAS  Article  Google Scholar 

  • Bagge N, Schuster M, Hentzer M et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Ag Chemother 48:1175–1187

    CAS  Article  Google Scholar 

  • Bavington C, Page C (2005) Stopping bacterial adhesion: a novel approach to treating infections. Respir Intern Rev Thorac Dis 72:335–344

    CAS  Google Scholar 

  • Beaudoin D, Bryers JD, Cunningham AB et al (1998b) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. II. Modeling. Biotechnol Bioeng 57:280–286

    PubMed  CAS  Article  Google Scholar 

  • Beaudoin D, Bryers JD, Cunningham AB et al (1998a) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments. Biotechnol Bioeng 57:272–279

    PubMed  CAS  Article  Google Scholar 

  • Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ben Jacob E, Aharonov Y, Shapira Y (2004) Bacteria harnessing complexity. Biofilms 1:239–263

    Article  Google Scholar 

  • Beveridge TJ (1999) Structures of gram negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bhargava A, Gupta VK, Singh AK, Gaur R (2012) Microbes for heavy metal remediation. In: Gaur R, Mehrotra S, Pandey RR (eds) Microbial applications. IK International Publ, New Delhi, pp 167–177

    Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:47–53

    Google Scholar 

  • Bielecki P, Glik J, Kawecki M et al (2008) Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 30:777–790

    PubMed  CAS  Article  Google Scholar 

  • van Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190:4377–4391

    Article  CAS  Google Scholar 

  • Di Bonaventura G, Pompilio A, Picciani C et al (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Ag Chemother 50:3269–3276

    Article  CAS  Google Scholar 

  • Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms. Ann Intensive Care 1:19

    PubMed  PubMed Central  Article  Google Scholar 

  • Borlee BR, Goldman AD, Murakami K et al (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Bosio S, Leekha S, Gamb SI et al (2012) Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc Path 21:361–364

    Article  Google Scholar 

  • Bruder-Nascimento A, Camargo CH, Lia Mondelli A et al (2014) Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Braz J Microbiol 45:1371–1377

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Brugnoni LI, Lozano JE, Cubitto MA (2007) Potential of yeast isolated from apple juice to adhere to stainless steel surfaces in the apple juice processing industry. Intern J Food Res 40:332–340

    CAS  Article  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Böckelmann U, Janke A, Kuhn R et al (2006) Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett 262:31–38

    PubMed  Article  CAS  Google Scholar 

  • Carmen JC, Roeder BL, Nelson JL (2004) Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl 18:237–245

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511

    PubMed  CAS  Article  Google Scholar 

  • de Carvalho CCCR (2007) Biofilms: recent developments on an old battle. Recent Patents Biotechnol 1:49–57

    Article  Google Scholar 

  • Chang WS, van de Mortel M, Nielsen L et al (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Characklis WG (1973) Attached microbial growths-II. Frictional resistance due to microbial slimes. Water Res 7:1249–1258

    CAS  Article  Google Scholar 

  • Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720

    PubMed  CAS  Article  Google Scholar 

  • Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Intern J Mol Sci 14:18488–18501

    Article  CAS  Google Scholar 

  • Christensen BB, Sternberg C, Andersen JB et al (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in Gram-positive bacteria. Ann Rev Microbiol 60:451–475

    CAS  Article  Google Scholar 

  • Conti E, Flaibani A, O’Regan M et al (1994) Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology 140:1125–1132

    CAS  Article  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    PubMed  CAS  Article  Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Intern J Antimicrob Ag 11:217–221

    CAS  Article  Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG et al (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    PubMed  CAS  Article  Google Scholar 

  • Costerton JW, Ellis B, Lam K et al (1994) Mechanism of electrical enhancement of effiacy of antibiotics in killing biofim bacteria. Antimicrob Ag Chemother 38:2803–2809

    CAS  Article  Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Amer 238:86–95

    PubMed  CAS  Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell D et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CAS  Article  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    PubMed  CAS  Article  Google Scholar 

  • Cunha MV, Sousa SA, Leitao JH et al (2004) Studies on the involvement of the exopolysaccharide produced by cystic fibrosis associated isolate of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infection. J Clin Microbiol 42:3052–3058

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    PubMed  CAS  Article  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    PubMed  PubMed Central  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilm: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Davies D (2003a) Understanding biofilm resistance to antibacterial agents. Nature Rev Drug Disc 2:114–122

    CAS  Article  Google Scholar 

  • Davies D (2003b) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    PubMed  CAS  Article  Google Scholar 

  • Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    PubMed  CAS  Article  Google Scholar 

  • Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379

    PubMed  PubMed Central  Article  Google Scholar 

  • Denyer SP, Gorman SP, Sussman M (1993) Microbial biofilms: formation and control. Blackwell Scientific Publ, Oxford

    Google Scholar 

  • Depan D, Misra RDK (2014) On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C Mater Biol Appl 34:221–228

    PubMed  CAS  Article  Google Scholar 

  • Djeribi R, Bouchloukh W, Jouenne T et al (2012) Characterization of bacterial biofilms formed on urinary catheters. Am J Infec Control 40:854–859

    Article  Google Scholar 

  • Donelli G, Francolini I (2001) Efficacy of antiadhesive, antibiotic and antiseptic coatings in preventing catheter-related infections: review. J Chemother 13:595–606

    PubMed  CAS  Article  Google Scholar 

  • Donlan R (2001a) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Donlan RM (2001b) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    PubMed  CAS  Article  Google Scholar 

  • Donlan RM (2002) Biofilm microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  PubMed Central  Article  Google Scholar 

  • Donlan R, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Donnelly RF, McCarron PA, Cassidy CM et al (2007) Delivery of photosensitisers and light through mucus: investigations into the potential use of photodynamic therapy for treatment of Pseudomonas aeruginosa cystic fibrosis pulmonary infection. J Contr Rel 117:217–226

    CAS  Article  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    PubMed  CAS  Article  Google Scholar 

  • Dow JM, Crossman L, Findlay K et al (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    PubMed  CAS  Article  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Dutta D, Cole N, Willcox M (2012) Factors influencing bacterial adhesion to contact lenses. Mol Vision 18:14–21

    CAS  Google Scholar 

  • Ehlers LJ, Bouwer EJ (1999) RP4 plasmid transfer among species of Pseudomonas in a biofilm reactor. Water Sci Technol 7:163–171

    Article  Google Scholar 

  • Ehrlich GD, Hu FZ, Shen K et al (2005) Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Rel Res 437:20–24

    Article  Google Scholar 

  • von Eiff C, Heilmann C, Hermann M et al (1999) Basic aspects of the pathogenesis of staphylococcal polymer associated infections. Infection 27:S7–S10

    Article  Google Scholar 

  • Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031

    PubMed  CAS  PubMed Central  Google Scholar 

  • Elving GJ, van der Mei HC, Busscher HJ et al (2002) Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol 111:200–203

    PubMed  Article  Google Scholar 

  • Espeland EM, Wetzel RG (2001) Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol 42:572–585

    PubMed  CAS  Article  Google Scholar 

  • Estrela AB, Heck MG, Abraham WR (2009) Novel approaches to control biofilm infections. Curr Med Chem 16:1512–1530

    PubMed  CAS  Article  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Møller K et al (2011) Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Rep Regen 19:387–391

    Article  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Fett WF, Osman SF, Fishman ML et al (1986) Alginate production by plant-pathogenic pseudomonads. Appl Environ Microbiol 52:466–473

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    PubMed  CAS  Google Scholar 

  • Fleuchot B, Gitton C, Guillot A et al (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in Streptococci. Mol Microbiol 80:1102–1119

    PubMed  CAS  Article  Google Scholar 

  • Fontaine L, Boutry C, de Frahan MH et al (2010) A novel pheromone quorum-sensing system controls the development of antural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Fontana CR, Abernethy AD, Som S et al (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofims. J Periodont Res 44:751–759

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immun Med Microbiol 59:227–238

    CAS  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    PubMed  CAS  Article  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    PubMed  CAS  Article  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    CAS  Article  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    PubMed  PubMed Central  Article  Google Scholar 

  • Gil-Perotin S, Ramirez P, Marti V et al (2012) Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care 16:R93

    PubMed  PubMed Central  Article  Google Scholar 

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:98S–110S

    PubMed  Article  Google Scholar 

  • Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167

    PubMed  CAS  Article  Google Scholar 

  • Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    PubMed  CAS  Article  Google Scholar 

  • Gualdi L, Tagliabue L, Landini P (2007) Biofilm formation-gene expression relay system in Escherichia coli: modulation of σS-dependent gene expression by the CsgD regulatory protein via σS protein stabilization. J Bacteriol 189:8034–8043

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Guinta AR (2010) New approaches for controlling biofilm formation. MS Thesis, University of Medicine and Dentistry of New Jersey, New Jersey

  • Guío L, Sarriá C, de las Cuevas C et al (2009) Chronic prosthetic valve endocarditis due to Propionibacterium acnes: an unexpected cause of prosthetic valve dysfunction. Rev Esp Cardiol 62:167–177

    PubMed  Article  Google Scholar 

  • Haghighi F, Mohammadi SR, Mohammadi P et al (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Med 1:33–38

    Article  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    PubMed  CAS  Article  Google Scholar 

  • Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Harrison JJ, Ceri H, Roper NJ et al (2005b) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151:3181–3195

    PubMed  CAS  Article  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2005a) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994

    PubMed  CAS  Article  Google Scholar 

  • Hauser G (1885) Über Fäulnisbakterien und deren Beziehung zur Septicämie. FGW Vogel, Leipzig

    Book  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in-situ analysis. Appl Environ Microbiol 65:3710–3713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hazan Z, Zumeris J, Jacob H et al (2006) Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Ag Chemother 50:4144–4152

    CAS  Article  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 138:5395–5401

    Article  Google Scholar 

  • Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    PubMed  CAS  Article  Google Scholar 

  • Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hirsch P (1984) Microcolony formation and consortia. In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin, pp 373–393

    Chapter  Google Scholar 

  • Hoffman LR, D’Argenio DA, MacCoss MJ et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    PubMed  CAS  Article  Google Scholar 

  • Holm A, Vikström E (2014) Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front Plant Sci 5:309

    PubMed  PubMed Central  Article  Google Scholar 

  • Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295

    PubMed  CAS  Article  Google Scholar 

  • Horikoshi K, Grant WD (1998) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York

    Google Scholar 

  • Hou S, Zhou C, Liu Z et al (2009) Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett 19:5478–5481

    PubMed  CAS  Article  Google Scholar 

  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    PubMed  Article  Google Scholar 

  • Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105

    PubMed  CAS  Google Scholar 

  • Huber B, Riedel K, Hentzer M et al (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528

    PubMed  CAS  Article  Google Scholar 

  • Ichinose-Tsuno A, Aoki A, Takeuchi Y et al (2014) Antimicrobial photodynamic therapy suppresses dental plaque formation in healthy adults: a randomized controlled clinical trial. BMC Oral Health 14:152

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jacqueline C, Caillon J (2014) Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1):i37–i40

    PubMed  CAS  Article  Google Scholar 

  • Jesline A, John NP, Narayanan PM et al (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5:157–162

    CAS  Article  Google Scholar 

  • Ji C, Wang J, Liu T (2015) Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus. Biotechnol Lett. doi:10.1007/s10529-015-1882-5

    Google Scholar 

  • Jin Y, Zhang T, Samaranayake YH et al (2005) The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159:353–360

    PubMed  CAS  Article  Google Scholar 

  • Jones HC, Roth IL, Saunders WM (1969) Electron microscopic study of a slime layer. J Bacteriol 99:316–325

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaiser D, Losick R (1993) How and why bacteria talk to each other. Cell 73:873–885

    PubMed  CAS  Article  Google Scholar 

  • Karatan E, Michael AJ (2013) A wider role for polyamines in biofilm formation. Biotechnol Lett 35:1715–1717

    PubMed  CAS  Article  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Kasimanickam RK, Ranjan A, Asokan G et al (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomed 8:2809–2819

    Article  CAS  Google Scholar 

  • Khan ST, Ahamed M, Musarrat J et al (2014) Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothia dentocariosa and Rothia mucilaginosa. Eur J Oral Sci 122:397–403

    PubMed  CAS  Article  Google Scholar 

  • Khan S, Alam F, Azam A et al (2012) Gold nanoparticles enhance Methylene Blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomed 7:3245–3257

    CAS  Article  Google Scholar 

  • Khoury AE, Lam K, Ellis B et al (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38:M174–M178

    PubMed  CAS  Article  Google Scholar 

  • Kim HJ, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Lipos Res 14:123–139

    CAS  Article  Google Scholar 

  • Kokare CR, Chakraborty S, Khopade AN et al (2009) Biofilm: importance and applications. Ind J Biotech 8:159–168

    CAS  Google Scholar 

  • Korber DR, Lawrence JR, Lappin-Scott HM et al (1995) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms, plant and microbial biotechnology research series: 5. University Press, Cambridge, pp 15–45

    Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kreft JU (2004) Biofilm promote altruism. Arch Microbiol 150:2751–2760

    CAS  Article  Google Scholar 

  • Kwiecinska-Piróg J, Bogiel T, Skowron K et al (2014) Proteus mirabilis biofilm- qualitative and quantitative colorimetric methods-based evaluation. Braz J Microbiol 45:1423–1431

    PubMed  PubMed Central  Article  Google Scholar 

  • Labbate M, Queck SY, Koh KS et al (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Lambadi PR, Sharma TK, Kumar P et al (2015) Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomed 10:2155–2171

    CAS  Google Scholar 

  • LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levine H, Ben Jacob E (2004) Physical schemata underlying biological pattern formation-examples, issues and strategies. J Phys Biol 1:14–22

    Article  Google Scholar 

  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochem (Mosc) 70:267–274

    CAS  Article  Google Scholar 

  • Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362

    PubMed  CAS  Article  Google Scholar 

  • Lin PY, Chen HL, Huang CT et al (2010) Biofilm production, use of intravascular in-dwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia. Int J Antimicrob Ag 36:436–440

    CAS  Article  Google Scholar 

  • Lower SK, Lamlertthon S, Casillas-Ituarte NN et al (2011) Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci USA 108:18372–18377

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Lynch MJ, Swift S, Kirke DF et al (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4:18–28

    PubMed  CAS  Article  Google Scholar 

  • Le Magrex-Debar E, Lemoine J, Gelle MP et al (2000) Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbiol 55:239–1234

    PubMed  Article  Google Scholar 

  • Mah T, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    PubMed  CAS  Article  Google Scholar 

  • Mah T, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    PubMed  CAS  Article  Google Scholar 

  • Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307

    PubMed  CAS  Article  Google Scholar 

  • Mariscal A, Lopez-Gigosos RM, Carnero-Varo M et al (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82:773–783

    PubMed  CAS  Article  Google Scholar 

  • Marlow VL, Porter M, Hobley L et al (2014) Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J Bacteriol 196:16–27

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Martin C, Low WL, Gupta A et al (2015) Strategies for antimicrobial drug delivery to biofilm. Curr Pharm Des 21:43–66

    PubMed  CAS  Article  Google Scholar 

  • Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Mashburn-Warren L, Morrison DA, Federie MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Ag Chemother 53:4628–4639

    CAS  Article  Google Scholar 

  • McNeill K, Hamilton IR (2003) Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 221:25–30

    PubMed  CAS  Article  Google Scholar 

  • van der Mei HC, Buijssen KJDA, van der Laan BFAM et al (2014) Voice prosthetic biofilm formation and Candida morphogenic conversions in absence and presence of different bacterial strains and species on silicone-rubber. PLoS ONE 9:e104508

    PubMed  PubMed Central  Article  Google Scholar 

  • Melo LF, Bott TR (1997) Biofouling in water systems. J Exp Therm Fluid Sci 14:375–381

    CAS  Article  Google Scholar 

  • Merritt J, Qi F, Goodman SD et al (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    PubMed  CAS  Article  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    PubMed  CAS  Article  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA et al (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:171–179

    CAS  Article  Google Scholar 

  • Nafee N, Husari A, Maurer CK et al (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Contr Rel 192:131–140

    CAS  Article  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neethirajan S, Clond MA, Vogt A (2014) Medical biofilms- nanotechnology approaches. J Biomed Nanotech 10:1–22

    Article  CAS  Google Scholar 

  • Norris P, Noble M, Francolini I et al (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Ag Chemother 49:4272–4279

    CAS  Article  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449

    PubMed  CAS  Article  Google Scholar 

  • Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38:181–191

    PubMed  CAS  Article  Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745

    PubMed  CAS  PubMed Central  Google Scholar 

  • O’Toole G, Stewart P (2005) Biofilms strike back. Nat Biotechnol 23:1378–1379

    PubMed  Article  CAS  Google Scholar 

  • Pantanella F, Valenti P, Frioni A et al (2008) BioTimer assay, a new method for counting Staphylococcus spp. in biofilm without sample manipulation applied to evaluate antibiotic susceptibility of biofilm. J Microbiol Methods 75:478–484

    PubMed  CAS  Article  Google Scholar 

  • Pantanella F, Valenti P, Natalizi T et al (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25:31–42

    PubMed  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    PubMed  CAS  Article  Google Scholar 

  • Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16:234–240

    Google Scholar 

  • Percival SL, Kite P (2007) Catheters and infection control. J Vasc Access 2:69–80

    Google Scholar 

  • Percival SL, Malic S, Cruz H et al (2011a) Introduction to biofilms. In: Percival SL (ed) Biofilms and veterinary medicine, Springer Series on Biofilms 6. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Percival SL, Thomas J, Thomas D et al (2011b) Antimicrobial tolerance and role of biofilms and persister cells in wounds. Wound Rep Regen 19:1–9

    Article  Google Scholar 

  • Pickering SA, Bayston R, Scammell BE (2003) Electromagnetic augmentation of antibiotic effiacy in infection of orthopaedic implants. J Bone Joint Surg Br 85:588–593

    PubMed  CAS  Article  Google Scholar 

  • Pikuta EV, Hoover RB (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    PubMed  CAS  Article  Google Scholar 

  • del Pozo JL, Patel R (2007) The challenge of treating biofilms associated bacterial infections. Clin Pharm Therapeut 82:204–209

    Article  CAS  Google Scholar 

  • del Pozo JL, Rouse MS, Mandrekar JN et al (2009) Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Ag Chemother 53:35–40

    Article  CAS  Google Scholar 

  • Prakash B, Veeregowda BM, Krishnappa G (2003) A survival strategy of bacteria. J Curr Sci 85:9–10

    Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    PubMed  CAS  Article  Google Scholar 

  • Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Punithavathy PM, Nalina K, Menon T (2012) Antifungal susceptibility testing of Candida tropicalis biofilms against fluconazole using calorimetric indicator resazurin. Ind J Pathol Microbiol 55:72–74

    CAS  Article  Google Scholar 

  • Puskas A, Greenberg EP, Kaplan S et al (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raghavendra M, Koregol A, Bhola S (2009) Photodynamic therapy: a targeted therapy in periodontics. Aust Dent J 54(Suppl 1):S102–S109

    PubMed  Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83

    CAS  Article  Google Scholar 

  • Rajesh S, Koshi E, Philip K et al (2011) Antimicrobial photodynamic therapy: an overview. J Ind Soc Periodont 15:323–327

    CAS  Article  Google Scholar 

  • Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986

    PubMed  CAS  Article  Google Scholar 

  • Da Re S, Ghigo JM (2006) A CsgD independent pathway for cellulose production and biofilm formation in Esherichia coli. J Bacteriol 188:3073–3083

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    PubMed  CAS  Article  Google Scholar 

  • Rediske AM, Roeder BL, Nelson JL (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofims by aminoglycoside antibiotics in vivo. Antimicrob Ag Chemother 44:771–772

    CAS  Article  Google Scholar 

  • Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Reymond JL, Bergmann M, Darbre T (2013) Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev 42:4814–4822

    PubMed  CAS  Article  Google Scholar 

  • Rhoads DD, Wolcott RW, Cutting KF et al (2007) Evidence of biofilms in wounds and potential ramifications. In: Gilbert P, Allison D, Brading M et al (eds) Biofilms: coming of age, Vol 8. The biofilm club, pp 131–143

  • Roberts AP, Pratten J, Wilson M et al (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:63–66

    PubMed  CAS  Article  Google Scholar 

  • Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80

    PubMed  CAS  Article  Google Scholar 

  • Sakamoto A, Terui Y, Yamamoto T et al (2012) Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 44:1877–1886

    PubMed  CAS  Article  Google Scholar 

  • Salem W, Leitner DR, Zingl FG et al (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Intern J Med Microbiol 305:85–95

    CAS  Article  Google Scholar 

  • Sandberg ME, Schellmann D, Brunhofer G et al (2009) Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J Microbiol Meth 78:104–106

    CAS  Article  Google Scholar 

  • Sanhai WR, Sakamoto JH, Canady R et al (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244

    PubMed  CAS  Article  Google Scholar 

  • Santos AP, Watanabe E, Andrade Dd (2011) Biofilm on artificial pacemaker: fiction or reality? Arq Bras Cardiol 97:e113–e120

    PubMed  Article  Google Scholar 

  • Sathyanarayanan MB, Balachandranath R, Srinivasulu YG et al (2013) The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiology 2013:272086

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4:219

    PubMed  PubMed Central  Article  Google Scholar 

  • Sauer K, Cullen MC, Rickard AH et al (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480

    PubMed  CAS  Article  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schuckert KH, Jopp S, Müller U (2006) De novo grown bone on exposed implant surfaces using photodynamic therapy and recombinant human bone morphogenetic protein-2: case report. Implant Dent 15:361–365

    PubMed  Article  Google Scholar 

  • Scwingel AR, Barcessat AR, Núñez SC et al (2012) Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg 30:429–432

    PubMed  CAS  Article  Google Scholar 

  • Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396

    Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS et al (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    CAS  Article  Google Scholar 

  • Shapiro JA, Dworkin M (1997) Bacteria as multicellular organsims. Oxford University Press Inc, New York

    Google Scholar 

  • Simões M, Carvalho H, Pereira MO et al (2003) Studies on the behavior of Pseudomonas fluorescens biofilms after ortho-phthalaldehyde treatment. Biofoul 3:151–157

    Article  CAS  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Tech 43:573–583

    Article  CAS  Google Scholar 

  • Singhai M, Malik A, Shahid M et al (2012) Colonization of peripheral intravascular catheters with biofilm producing microbes: evaluation of risk factors. Niger Med J 53:37–41

    PubMed  PubMed Central  Article  Google Scholar 

  • Skogman ME, Vuorela PM, Fallarero A (2012) Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot (Tokyo) 65:453–459

    CAS  Article  Google Scholar 

  • Slater H, Alvarez-Morales A, Barber CE et al (2000) A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003

    PubMed  CAS  Article  Google Scholar 

  • Smadhi M, de Bentzmann S, Imberty A et al (2014) Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation. Beilstein J Org Chem 10:1981–1990

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Smirnova TA, Didenko LV, Azizbekyan RR et al (2010) Structural and functional characteristics of bacterial biofilms. Microbiology 79:413–423

    CAS  Article  Google Scholar 

  • Smith WA (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery system? Adv Drug Delivery Rev 57:1539–1550

    CAS  Article  Google Scholar 

  • Song Z, Borgwardt L, Høiby N et al (2013) Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthopedic Rev 5:e14

    Article  Google Scholar 

  • Soukos NS, Chen PS, Morris JT et al (2006) Photodynamic therapy for endodontic disinfection. J Endod 32:979–984

    PubMed  Article  Google Scholar 

  • Srivastava S, Bhargava A (2014) Microbial biofilms: from nature to human body. In: Shukla DS, Pandey DK (eds) Current trend in life science. JBC Press, New Delhi, pp 1–16

    Google Scholar 

  • Srivastava S, Pathak N, Bhargava A et al (2011b) Nanotechnology for cancer diagnosis and therapy. IMTU Medical J 2:19–30

    Google Scholar 

  • Srivastava S, Pathak N, Bhargava A et al (2014) Nanotechnology: the science of the future. In: Shukla DS, Pandey DK (eds) Current trend in life science. JBC Press, New Delhi, pp 182–195

    Google Scholar 

  • Srivastava S, Pathak N, Srivastava P (2011a) Identification of limiting factors for the optimum growth of Fusarium oxysporum in liquid media. Toxicol Intern 18:111–116

    Article  Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    PubMed  CAS  Article  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    PubMed  CAS  Article  Google Scholar 

  • Stewart PS, Wattanakaroon W, Goodrum L et al (1999) Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofim. Antimicrob Ag Chemother 43:292–296

    CAS  Google Scholar 

  • Stickler DJ (2014) Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med 276:120–129

    PubMed  CAS  Article  Google Scholar 

  • Stoodley P, Boyle JD, Dodds I et al (1998) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28S

    PubMed  Article  Google Scholar 

  • Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoodley P, Sauer K, Davies DG et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    PubMed  CAS  Article  Google Scholar 

  • Sun LM, Zhang CL, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60:6150–6156

    PubMed  CAS  Article  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiol 147:3–9

    CAS  Article  Google Scholar 

  • Szczotka-Flynn LB, Imamura Y, Chandra J et al (2009) Increased resistance of contact lens related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 28:918–926

    PubMed  PubMed Central  Article  Google Scholar 

  • Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Tanaka M, Mroz P, Dai T et al (2012) Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS ONE 7:e39823

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Tawakoli PN, Al-Ahmad A, Hoth-Hannig W et al (2013) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17:841–850

    PubMed  CAS  Article  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47

    PubMed  CAS  Article  Google Scholar 

  • Trizna EY, Khakimullina EN, Latypova LZ et al (2015) Thio derivatives of 2(5H)-furanone as inhibitors against Bacillus subtilis biofilms. Acta Naturae 7:102–107

    PubMed  PubMed Central  Google Scholar 

  • Tsuneda S, Aikawa H, Hayashi H et al (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292

    PubMed  CAS  Article  Google Scholar 

  • Uroz S, Oger P, Lepleux C et al (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res Microbiol 162:820–831

    PubMed  CAS  Article  Google Scholar 

  • Valle J, Da Re S, Henry N et al (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Ptoc Nat Acad Sci USA 103:12558–12563

    CAS  Article  Google Scholar 

  • Vandecandelaere I, Matthijs N, Van Nieuwerburgh F et al (2012) Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS ONE 7:e38401

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Vu B, Chen M, Crawford RJ et al (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    PubMed  CAS  Article  Google Scholar 

  • Wainwright M, Crossley KB (2004) Photosensitising agents-circumventing resistance and breaking down biofims: a review. Intern Biodeter Biodegrad 53:119–126

    CAS  Article  Google Scholar 

  • Walters MC III, Roe F, Bugnicourt A et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Ag Chemother 47:317–323

    CAS  Article  Google Scholar 

  • Wang A, Athan E, Pappas PA et al (2007) Contemporary clinical profile and outcome of prosthetic valve endocarditis. J Am Med Assn 297:1354–1361

    CAS  Article  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol 21:319–346

    CAS  Article  Google Scholar 

  • Wen ZT, Burne RA (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances– characterization, structure and function. Springer-Verlag, Berlin Heidelberg, pp 1–19

    Chapter  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD et al (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223

    PubMed  CAS  Article  Google Scholar 

  • Woo GL, Yang ML, Yin HQ et al (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with floroquinolones. J Biomed Mater Res 59:35–45

    PubMed  CAS  Article  Google Scholar 

  • Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    PubMed  CAS  Article  Google Scholar 

  • Zhang L, Jiang Y, Ding Y et al (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanoflids). J Nanoparticle Res 9:479–489

    Article  CAS  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu CMJ et al (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    PubMed  CAS  Article  Google Scholar 

  • Zhu CT, Xu YQ, Shi J et al (2010) Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv 17:391–398

    PubMed  CAS  Article  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces on bacterial activity. J Bacteriol 46:39–56

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zogaj X, Nimtz M, Ronde M et al (2001) The multicellular morphotipes of Salmonella typhimurium and E. coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Bhargava.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Bhargava, A. Biofilms and human health. Biotechnol Lett 38, 1–22 (2016). https://doi.org/10.1007/s10529-015-1960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1960-8

Keywords

  • Biofilm
  • Quorum sensing
  • Indwelling medical devices
  • Nanobiotechnology