Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128
PubMed
CAS
Article
Google Scholar
Allison DG (2003) The biofilm matrix. Biofoul 19:139–150
CAS
Article
Google Scholar
Anderl JN, Zahller J, Roe F et al (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Ag Chemother 47:1251–1256
CAS
Article
Google Scholar
Anwar H, Strap JL, Chen K et al (1992) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Ag Chemother 36:1208–1214
CAS
Article
Google Scholar
Archibald L, Phillips L, Monnet D et al (1997) Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 24:211–215
PubMed
CAS
Article
Google Scholar
Atkinson S, Throup JP, Stewart GS et al (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277
PubMed
CAS
Article
Google Scholar
Bagge N, Schuster M, Hentzer M et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Ag Chemother 48:1175–1187
CAS
Article
Google Scholar
Bavington C, Page C (2005) Stopping bacterial adhesion: a novel approach to treating infections. Respir Intern Rev Thorac Dis 72:335–344
CAS
Google Scholar
Beaudoin D, Bryers JD, Cunningham AB et al (1998b) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. II. Modeling. Biotechnol Bioeng 57:280–286
PubMed
CAS
Article
Google Scholar
Beaudoin D, Bryers JD, Cunningham AB et al (1998a) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments. Biotechnol Bioeng 57:272–279
PubMed
CAS
Article
Google Scholar
Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289
PubMed
CAS
PubMed Central
Google Scholar
Ben Jacob E, Aharonov Y, Shapira Y (2004) Bacteria harnessing complexity. Biofilms 1:239–263
Article
Google Scholar
Beveridge TJ (1999) Structures of gram negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733
PubMed
CAS
PubMed Central
Google Scholar
Bhargava A, Gupta VK, Singh AK, Gaur R (2012) Microbes for heavy metal remediation. In: Gaur R, Mehrotra S, Pandey RR (eds) Microbial applications. IK International Publ, New Delhi, pp 167–177
Google Scholar
Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:47–53
Google Scholar
Bielecki P, Glik J, Kawecki M et al (2008) Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 30:777–790
PubMed
CAS
Article
Google Scholar
van Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190:4377–4391
Article
CAS
Google Scholar
Di Bonaventura G, Pompilio A, Picciani C et al (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Ag Chemother 50:3269–3276
Article
CAS
Google Scholar
Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms. Ann Intensive Care 1:19
PubMed
PubMed Central
Article
Google Scholar
Borlee BR, Goldman AD, Murakami K et al (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842
PubMed
CAS
PubMed Central
Article
Google Scholar
Bosio S, Leekha S, Gamb SI et al (2012) Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc Path 21:361–364
Article
Google Scholar
Bruder-Nascimento A, Camargo CH, Lia Mondelli A et al (2014) Candida species biofilm and Candida albicans
ALS3 polymorphisms in clinical isolates. Braz J Microbiol 45:1371–1377
PubMed
CAS
PubMed Central
Article
Google Scholar
Brugnoni LI, Lozano JE, Cubitto MA (2007) Potential of yeast isolated from apple juice to adhere to stainless steel surfaces in the apple juice processing industry. Intern J Food Res 40:332–340
CAS
Article
Google Scholar
Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31
CAS
Google Scholar
Böckelmann U, Janke A, Kuhn R et al (2006) Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett 262:31–38
PubMed
Article
CAS
Google Scholar
Carmen JC, Roeder BL, Nelson JL (2004) Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl 18:237–245
PubMed
CAS
PubMed Central
Article
Google Scholar
Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511
PubMed
CAS
Article
Google Scholar
de Carvalho CCCR (2007) Biofilms: recent developments on an old battle. Recent Patents Biotechnol 1:49–57
Article
Google Scholar
Chang WS, van de Mortel M, Nielsen L et al (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299
PubMed
CAS
PubMed Central
Article
Google Scholar
Characklis WG (1973) Attached microbial growths-II. Frictional resistance due to microbial slimes. Water Res 7:1249–1258
CAS
Article
Google Scholar
Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720
PubMed
CAS
Article
Google Scholar
Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Intern J Mol Sci 14:18488–18501
Article
CAS
Google Scholar
Christensen BB, Sternberg C, Andersen JB et al (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255
PubMed
CAS
PubMed Central
Google Scholar
Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895
PubMed
PubMed Central
Article
CAS
Google Scholar
Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in Gram-positive bacteria. Ann Rev Microbiol 60:451–475
CAS
Article
Google Scholar
Conti E, Flaibani A, O’Regan M et al (1994) Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology 140:1125–1132
CAS
Article
Google Scholar
Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140
PubMed
CAS
Article
Google Scholar
Costerton JW (1999) Introduction to biofilm. Intern J Antimicrob Ag 11:217–221
CAS
Article
Google Scholar
Costerton JW, Cheng K-J, Geesey GG et al (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
PubMed
CAS
Article
Google Scholar
Costerton JW, Ellis B, Lam K et al (1994) Mechanism of electrical enhancement of effiacy of antibiotics in killing biofim bacteria. Antimicrob Ag Chemother 38:2803–2809
CAS
Article
Google Scholar
Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Amer 238:86–95
PubMed
CAS
Article
Google Scholar
Costerton JW, Lewandowski Z, Caldwell D et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745
PubMed
CAS
Article
Google Scholar
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
PubMed
CAS
Article
Google Scholar
Cunha MV, Sousa SA, Leitao JH et al (2004) Studies on the involvement of the exopolysaccharide produced by cystic fibrosis associated isolate of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infection. J Clin Microbiol 42:3052–3058
PubMed
CAS
PubMed Central
Article
Google Scholar
Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206
PubMed
CAS
PubMed Central
Article
Google Scholar
Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289
PubMed
CAS
Article
Google Scholar
Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810
PubMed
PubMed Central
Google Scholar
Davey ME, O’Toole GA (2000) Microbial biofilm: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867
PubMed
CAS
PubMed Central
Article
Google Scholar
Davies D (2003a) Understanding biofilm resistance to antibacterial agents. Nature Rev Drug Disc 2:114–122
CAS
Article
Google Scholar
Davies D (2003b) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122
PubMed
CAS
Article
Google Scholar
Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782
PubMed
CAS
Article
Google Scholar
Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379
PubMed
PubMed Central
Article
Google Scholar
Denyer SP, Gorman SP, Sussman M (1993) Microbial biofilms: formation and control. Blackwell Scientific Publ, Oxford
Google Scholar
Depan D, Misra RDK (2014) On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C Mater Biol Appl 34:221–228
PubMed
CAS
Article
Google Scholar
Djeribi R, Bouchloukh W, Jouenne T et al (2012) Characterization of bacterial biofilms formed on urinary catheters. Am J Infec Control 40:854–859
Article
Google Scholar
Donelli G, Francolini I (2001) Efficacy of antiadhesive, antibiotic and antiseptic coatings in preventing catheter-related infections: review. J Chemother 13:595–606
PubMed
CAS
Article
Google Scholar
Donlan R (2001a) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281
PubMed
CAS
PubMed Central
Article
Google Scholar
Donlan RM (2001b) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392
PubMed
CAS
Article
Google Scholar
Donlan RM (2002) Biofilm microbial life on surfaces. Emerg Infect Dis 8:881–890
PubMed
PubMed Central
Article
Google Scholar
Donlan R, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193
PubMed
CAS
PubMed Central
Article
Google Scholar
Donnelly RF, McCarron PA, Cassidy CM et al (2007) Delivery of photosensitisers and light through mucus: investigations into the potential use of photodynamic therapy for treatment of Pseudomonas aeruginosa cystic fibrosis pulmonary infection. J Contr Rel 117:217–226
CAS
Article
Google Scholar
Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36
PubMed
CAS
Article
Google Scholar
Dow JM, Crossman L, Findlay K et al (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000
PubMed
CAS
PubMed Central
Article
Google Scholar
Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600
PubMed
CAS
Article
Google Scholar
Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166
PubMed
CAS
PubMed Central
Article
Google Scholar
Dutta D, Cole N, Willcox M (2012) Factors influencing bacterial adhesion to contact lenses. Mol Vision 18:14–21
CAS
Google Scholar
Ehlers LJ, Bouwer EJ (1999) RP4 plasmid transfer among species of Pseudomonas in a biofilm reactor. Water Sci Technol 7:163–171
Article
Google Scholar
Ehrlich GD, Hu FZ, Shen K et al (2005) Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Rel Res 437:20–24
Article
Google Scholar
von Eiff C, Heilmann C, Hermann M et al (1999) Basic aspects of the pathogenesis of staphylococcal polymer associated infections. Infection 27:S7–S10
Article
Google Scholar
Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031
PubMed
CAS
PubMed Central
Google Scholar
Elving GJ, van der Mei HC, Busscher HJ et al (2002) Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol 111:200–203
PubMed
Article
Google Scholar
Espeland EM, Wetzel RG (2001) Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol 42:572–585
PubMed
CAS
Article
Google Scholar
Estrela AB, Heck MG, Abraham WR (2009) Novel approaches to control biofilm infections. Curr Med Chem 16:1512–1530
PubMed
CAS
Article
Google Scholar
Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585
PubMed
CAS
PubMed Central
Article
Google Scholar
Fazli M, Bjarnsholt T, Kirketerp-Møller K et al (2011) Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Rep Regen 19:387–391
Article
Google Scholar
Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299
PubMed
CAS
PubMed Central
Article
Google Scholar
Fett WF, Osman SF, Fishman ML et al (1986) Alginate production by plant-pathogenic pseudomonads. Appl Environ Microbiol 52:466–473
PubMed
CAS
PubMed Central
Google Scholar
Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118
PubMed
CAS
PubMed Central
Article
Google Scholar
Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633
PubMed
CAS
Google Scholar
Fleuchot B, Gitton C, Guillot A et al (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in Streptococci. Mol Microbiol 80:1102–1119
PubMed
CAS
Article
Google Scholar
Fontaine L, Boutry C, de Frahan MH et al (2010) A novel pheromone quorum-sensing system controls the development of antural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454
PubMed
CAS
PubMed Central
Article
Google Scholar
Fontana CR, Abernethy AD, Som S et al (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofims. J Periodont Res 44:751–759
PubMed
CAS
PubMed Central
Article
Google Scholar
Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immun Med Microbiol 59:227–238
CAS
Google Scholar
Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695
PubMed
CAS
Article
Google Scholar
Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40
PubMed
CAS
Article
Google Scholar
Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056
CAS
Article
Google Scholar
Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490
PubMed
PubMed Central
Article
Google Scholar
Gil-Perotin S, Ramirez P, Marti V et al (2012) Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care 16:R93
PubMed
PubMed Central
Article
Google Scholar
Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:98S–110S
PubMed
Article
Google Scholar
Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167
PubMed
CAS
Article
Google Scholar
Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378
PubMed
CAS
Article
Google Scholar
Gualdi L, Tagliabue L, Landini P (2007) Biofilm formation-gene expression relay system in Escherichia coli: modulation of σS-dependent gene expression by the CsgD regulatory protein via σS protein stabilization. J Bacteriol 189:8034–8043
PubMed
CAS
PubMed Central
Article
Google Scholar
Guinta AR (2010) New approaches for controlling biofilm formation. MS Thesis, University of Medicine and Dentistry of New Jersey, New Jersey
Guío L, Sarriá C, de las Cuevas C et al (2009) Chronic prosthetic valve endocarditis due to Propionibacterium acnes: an unexpected cause of prosthetic valve dysfunction. Rev Esp Cardiol 62:167–177
PubMed
Article
Google Scholar
Haghighi F, Mohammadi SR, Mohammadi P et al (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Med 1:33–38
Article
Google Scholar
Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108
PubMed
CAS
Article
Google Scholar
Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450
PubMed
CAS
PubMed Central
Article
Google Scholar
Harrison JJ, Ceri H, Roper NJ et al (2005b) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151:3181–3195
PubMed
CAS
Article
Google Scholar
Harrison JJ, Turner RJ, Ceri H (2005a) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994
PubMed
CAS
Article
Google Scholar
Hauser G (1885) Über Fäulnisbakterien und deren Beziehung zur Septicämie. FGW Vogel, Leipzig
Book
Google Scholar
Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in-situ analysis. Appl Environ Microbiol 65:3710–3713
PubMed
CAS
PubMed Central
Google Scholar
Hazan Z, Zumeris J, Jacob H et al (2006) Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Ag Chemother 50:4144–4152
CAS
Article
Google Scholar
Hentzer M, Teitzel GM, Balzer GJ et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 138:5395–5401
Article
Google Scholar
Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789
PubMed
CAS
Article
Google Scholar
Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558
PubMed
CAS
PubMed Central
Google Scholar
Hirsch P (1984) Microcolony formation and consortia. In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin, pp 373–393
Chapter
Google Scholar
Hoffman LR, D’Argenio DA, MacCoss MJ et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175
PubMed
CAS
Article
Google Scholar
Holm A, Vikström E (2014) Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front Plant Sci 5:309
PubMed
PubMed Central
Article
Google Scholar
Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295
PubMed
CAS
Article
Google Scholar
Horikoshi K, Grant WD (1998) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York
Google Scholar
Hou S, Zhou C, Liu Z et al (2009) Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett 19:5478–5481
PubMed
CAS
Article
Google Scholar
Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131
PubMed
Article
Google Scholar
Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105
PubMed
CAS
Google Scholar
Huber B, Riedel K, Hentzer M et al (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528
PubMed
CAS
Article
Google Scholar
Ichinose-Tsuno A, Aoki A, Takeuchi Y et al (2014) Antimicrobial photodynamic therapy suppresses dental plaque formation in healthy adults: a randomized controlled clinical trial. BMC Oral Health 14:152
PubMed
PubMed Central
Article
CAS
Google Scholar
Jacqueline C, Caillon J (2014) Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1):i37–i40
PubMed
CAS
Article
Google Scholar
Jesline A, John NP, Narayanan PM et al (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5:157–162
CAS
Article
Google Scholar
Ji C, Wang J, Liu T (2015) Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus. Biotechnol Lett. doi:10.1007/s10529-015-1882-5
Google Scholar
Jin Y, Zhang T, Samaranayake YH et al (2005) The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159:353–360
PubMed
CAS
Article
Google Scholar
Jones HC, Roth IL, Saunders WM (1969) Electron microscopic study of a slime layer. J Bacteriol 99:316–325
PubMed
CAS
PubMed Central
Google Scholar
Kaiser D, Losick R (1993) How and why bacteria talk to each other. Cell 73:873–885
PubMed
CAS
Article
Google Scholar
Karatan E, Michael AJ (2013) A wider role for polyamines in biofilm formation. Biotechnol Lett 35:1715–1717
PubMed
CAS
Article
Google Scholar
Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347
PubMed
CAS
PubMed Central
Article
Google Scholar
Kasimanickam RK, Ranjan A, Asokan G et al (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomed 8:2809–2819
Article
CAS
Google Scholar
Khan ST, Ahamed M, Musarrat J et al (2014) Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothia dentocariosa and Rothia mucilaginosa. Eur J Oral Sci 122:397–403
PubMed
CAS
Article
Google Scholar
Khan S, Alam F, Azam A et al (2012) Gold nanoparticles enhance Methylene Blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomed 7:3245–3257
CAS
Article
Google Scholar
Khoury AE, Lam K, Ellis B et al (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38:M174–M178
PubMed
CAS
Article
Google Scholar
Kim HJ, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Lipos Res 14:123–139
CAS
Article
Google Scholar
Kokare CR, Chakraborty S, Khopade AN et al (2009) Biofilm: importance and applications. Ind J Biotech 8:159–168
CAS
Google Scholar
Korber DR, Lawrence JR, Lappin-Scott HM et al (1995) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms, plant and microbial biotechnology research series: 5. University Press, Cambridge, pp 15–45
Google Scholar
Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306
PubMed
PubMed Central
Article
CAS
Google Scholar
Kreft JU (2004) Biofilm promote altruism. Arch Microbiol 150:2751–2760
CAS
Article
Google Scholar
Kwiecinska-Piróg J, Bogiel T, Skowron K et al (2014) Proteus mirabilis biofilm- qualitative and quantitative colorimetric methods-based evaluation. Braz J Microbiol 45:1423–1431
PubMed
PubMed Central
Article
Google Scholar
Labbate M, Queck SY, Koh KS et al (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698
PubMed
CAS
PubMed Central
Article
Google Scholar
Lambadi PR, Sharma TK, Kumar P et al (2015) Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomed 10:2155–2171
CAS
Google Scholar
LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499
PubMed
CAS
PubMed Central
Google Scholar
Levine H, Ben Jacob E (2004) Physical schemata underlying biological pattern formation-examples, issues and strategies. J Phys Biol 1:14–22
Article
Google Scholar
Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochem (Mosc) 70:267–274
CAS
Article
Google Scholar
Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362
PubMed
CAS
Article
Google Scholar
Lin PY, Chen HL, Huang CT et al (2010) Biofilm production, use of intravascular in-dwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia. Int J Antimicrob Ag 36:436–440
CAS
Article
Google Scholar
Lower SK, Lamlertthon S, Casillas-Ituarte NN et al (2011) Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci USA 108:18372–18377
PubMed
CAS
PubMed Central
Article
Google Scholar
Lynch MJ, Swift S, Kirke DF et al (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4:18–28
PubMed
CAS
Article
Google Scholar
Le Magrex-Debar E, Lemoine J, Gelle MP et al (2000) Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbiol 55:239–1234
PubMed
Article
Google Scholar
Mah T, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39
PubMed
CAS
Article
Google Scholar
Mah T, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310
PubMed
CAS
Article
Google Scholar
Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307
PubMed
CAS
Article
Google Scholar
Mariscal A, Lopez-Gigosos RM, Carnero-Varo M et al (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82:773–783
PubMed
CAS
Article
Google Scholar
Marlow VL, Porter M, Hobley L et al (2014) Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J Bacteriol 196:16–27
PubMed
PubMed Central
Article
CAS
Google Scholar
Martin C, Low WL, Gupta A et al (2015) Strategies for antimicrobial drug delivery to biofilm. Curr Pharm Des 21:43–66
PubMed
CAS
Article
Google Scholar
Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601
PubMed
CAS
PubMed Central
Article
Google Scholar
Mashburn-Warren L, Morrison DA, Federie MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606
PubMed
CAS
PubMed Central
Article
Google Scholar
May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Ag Chemother 53:4628–4639
CAS
Article
Google Scholar
McNeill K, Hamilton IR (2003) Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 221:25–30
PubMed
CAS
Article
Google Scholar
van der Mei HC, Buijssen KJDA, van der Laan BFAM et al (2014) Voice prosthetic biofilm formation and Candida morphogenic conversions in absence and presence of different bacterial strains and species on silicone-rubber. PLoS ONE 9:e104508
PubMed
PubMed Central
Article
Google Scholar
Melo LF, Bott TR (1997) Biofouling in water systems. J Exp Therm Fluid Sci 14:375–381
CAS
Article
Google Scholar
Merritt J, Qi F, Goodman SD et al (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979
PubMed
CAS
PubMed Central
Article
Google Scholar
Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199
PubMed
CAS
Article
Google Scholar
Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261
PubMed
CAS
Article
Google Scholar
Nadell CD, Xavier JB, Levin SA et al (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:171–179
CAS
Article
Google Scholar
Nafee N, Husari A, Maurer CK et al (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Contr Rel 192:131–140
CAS
Article
Google Scholar
Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518
PubMed
CAS
PubMed Central
Google Scholar
Neethirajan S, Clond MA, Vogt A (2014) Medical biofilms- nanotechnology approaches. J Biomed Nanotech 10:1–22
Article
CAS
Google Scholar
Norris P, Noble M, Francolini I et al (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Ag Chemother 49:4272–4279
CAS
Article
Google Scholar
Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449
PubMed
CAS
Article
Google Scholar
Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38:181–191
PubMed
CAS
Article
Google Scholar
Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745
PubMed
CAS
PubMed Central
Google Scholar
O’Toole G, Stewart P (2005) Biofilms strike back. Nat Biotechnol 23:1378–1379
PubMed
Article
CAS
Google Scholar
Pantanella F, Valenti P, Frioni A et al (2008) BioTimer assay, a new method for counting Staphylococcus spp. in biofilm without sample manipulation applied to evaluate antibiotic susceptibility of biofilm. J Microbiol Methods 75:478–484
PubMed
CAS
Article
Google Scholar
Pantanella F, Valenti P, Natalizi T et al (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25:31–42
PubMed
CAS
Google Scholar
Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760
PubMed
CAS
Article
Google Scholar
Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16:234–240
Google Scholar
Percival SL, Kite P (2007) Catheters and infection control. J Vasc Access 2:69–80
Google Scholar
Percival SL, Malic S, Cruz H et al (2011a) Introduction to biofilms. In: Percival SL (ed) Biofilms and veterinary medicine, Springer Series on Biofilms 6. Springer-Verlag, Berlin, Heidelberg
Google Scholar
Percival SL, Thomas J, Thomas D et al (2011b) Antimicrobial tolerance and role of biofilms and persister cells in wounds. Wound Rep Regen 19:1–9
Article
Google Scholar
Pickering SA, Bayston R, Scammell BE (2003) Electromagnetic augmentation of antibiotic effiacy in infection of orthopaedic implants. J Bone Joint Surg Br 85:588–593
PubMed
CAS
Article
Google Scholar
Pikuta EV, Hoover RB (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209
PubMed
CAS
Article
Google Scholar
del Pozo JL, Patel R (2007) The challenge of treating biofilms associated bacterial infections. Clin Pharm Therapeut 82:204–209
Article
CAS
Google Scholar
del Pozo JL, Rouse MS, Mandrekar JN et al (2009) Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Ag Chemother 53:35–40
Article
CAS
Google Scholar
Prakash B, Veeregowda BM, Krishnappa G (2003) A survival strategy of bacteria. J Curr Sci 85:9–10
Google Scholar
Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
PubMed
CAS
Article
Google Scholar
Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649
PubMed
CAS
PubMed Central
Article
Google Scholar
Punithavathy PM, Nalina K, Menon T (2012) Antifungal susceptibility testing of Candida tropicalis biofilms against fluconazole using calorimetric indicator resazurin. Ind J Pathol Microbiol 55:72–74
CAS
Article
Google Scholar
Puskas A, Greenberg EP, Kaplan S et al (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537
PubMed
CAS
PubMed Central
Google Scholar
Raghavendra M, Koregol A, Bhola S (2009) Photodynamic therapy: a targeted therapy in periodontics. Aust Dent J 54(Suppl 1):S102–S109
PubMed
Article
Google Scholar
Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83
CAS
Article
Google Scholar
Rajesh S, Koshi E, Philip K et al (2011) Antimicrobial photodynamic therapy: an overview. J Ind Soc Periodont 15:323–327
CAS
Article
Google Scholar
Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986
PubMed
CAS
Article
Google Scholar
Da Re S, Ghigo JM (2006) A CsgD independent pathway for cellulose production and biofilm formation in Esherichia coli. J Bacteriol 188:3073–3083
PubMed
PubMed Central
Article
CAS
Google Scholar
Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11
PubMed
CAS
Article
Google Scholar
Rediske AM, Roeder BL, Nelson JL (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofims by aminoglycoside antibiotics in vivo. Antimicrob Ag Chemother 44:771–772
CAS
Article
Google Scholar
Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355
PubMed
CAS
PubMed Central
Article
Google Scholar
Reymond JL, Bergmann M, Darbre T (2013) Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev 42:4814–4822
PubMed
CAS
Article
Google Scholar
Rhoads DD, Wolcott RW, Cutting KF et al (2007) Evidence of biofilms in wounds and potential ramifications. In: Gilbert P, Allison D, Brading M et al (eds) Biofilms: coming of age, Vol 8. The biofilm club, pp 131–143
Roberts AP, Pratten J, Wilson M et al (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:63–66
PubMed
CAS
Article
Google Scholar
Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80
PubMed
CAS
Article
Google Scholar
Sakamoto A, Terui Y, Yamamoto T et al (2012) Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 44:1877–1886
PubMed
CAS
Article
Google Scholar
Salem W, Leitner DR, Zingl FG et al (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Intern J Med Microbiol 305:85–95
CAS
Article
Google Scholar
Sandberg ME, Schellmann D, Brunhofer G et al (2009) Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J Microbiol Meth 78:104–106
CAS
Article
Google Scholar
Sanhai WR, Sakamoto JH, Canady R et al (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244
PubMed
CAS
Article
Google Scholar
Santos AP, Watanabe E, Andrade Dd (2011) Biofilm on artificial pacemaker: fiction or reality? Arq Bras Cardiol 97:e113–e120
PubMed
Article
Google Scholar
Sathyanarayanan MB, Balachandranath R, Srinivasulu YG et al (2013) The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiology 2013:272086
PubMed
PubMed Central
Article
CAS
Google Scholar
Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4:219
PubMed
PubMed Central
Article
Google Scholar
Sauer K, Cullen MC, Rickard AH et al (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326
PubMed
CAS
PubMed Central
Article
Google Scholar
Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480
PubMed
CAS
Article
Google Scholar
Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
PubMed
CAS
PubMed Central
Google Scholar
Schuckert KH, Jopp S, Müller U (2006) De novo grown bone on exposed implant surfaces using photodynamic therapy and recombinant human bone morphogenetic protein-2: case report. Implant Dent 15:361–365
PubMed
Article
Google Scholar
Scwingel AR, Barcessat AR, Núñez SC et al (2012) Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg 30:429–432
PubMed
CAS
Article
Google Scholar
Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396
Google Scholar
Seneviratne G, Zavahir JS, Bandara WMMS et al (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743
CAS
Article
Google Scholar
Shapiro JA, Dworkin M (1997) Bacteria as multicellular organsims. Oxford University Press Inc, New York
Google Scholar
Simões M, Carvalho H, Pereira MO et al (2003) Studies on the behavior of Pseudomonas fluorescens biofilms after ortho-phthalaldehyde treatment. Biofoul 3:151–157
Article
CAS
Google Scholar
Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Tech 43:573–583
Article
CAS
Google Scholar
Singhai M, Malik A, Shahid M et al (2012) Colonization of peripheral intravascular catheters with biofilm producing microbes: evaluation of risk factors. Niger Med J 53:37–41
PubMed
PubMed Central
Article
Google Scholar
Skogman ME, Vuorela PM, Fallarero A (2012) Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot (Tokyo) 65:453–459
CAS
Article
Google Scholar
Slater H, Alvarez-Morales A, Barber CE et al (2000) A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003
PubMed
CAS
Article
Google Scholar
Smadhi M, de Bentzmann S, Imberty A et al (2014) Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation. Beilstein J Org Chem 10:1981–1990
PubMed
PubMed Central
Article
CAS
Google Scholar
Smirnova TA, Didenko LV, Azizbekyan RR et al (2010) Structural and functional characteristics of bacterial biofilms. Microbiology 79:413–423
CAS
Article
Google Scholar
Smith WA (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery system? Adv Drug Delivery Rev 57:1539–1550
CAS
Article
Google Scholar
Song Z, Borgwardt L, Høiby N et al (2013) Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthopedic Rev 5:e14
Article
Google Scholar
Soukos NS, Chen PS, Morris JT et al (2006) Photodynamic therapy for endodontic disinfection. J Endod 32:979–984
PubMed
Article
Google Scholar
Srivastava S, Bhargava A (2014) Microbial biofilms: from nature to human body. In: Shukla DS, Pandey DK (eds) Current trend in life science. JBC Press, New Delhi, pp 1–16
Google Scholar
Srivastava S, Pathak N, Bhargava A et al (2011b) Nanotechnology for cancer diagnosis and therapy. IMTU Medical J 2:19–30
Google Scholar
Srivastava S, Pathak N, Bhargava A et al (2014) Nanotechnology: the science of the future. In: Shukla DS, Pandey DK (eds) Current trend in life science. JBC Press, New Delhi, pp 182–195
Google Scholar
Srivastava S, Pathak N, Srivastava P (2011a) Identification of limiting factors for the optimum growth of Fusarium oxysporum in liquid media. Toxicol Intern 18:111–116
Article
Google Scholar
Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113
PubMed
CAS
Article
Google Scholar
Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138
PubMed
CAS
Article
Google Scholar
Stewart PS, Wattanakaroon W, Goodrum L et al (1999) Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofim. Antimicrob Ag Chemother 43:292–296
CAS
Google Scholar
Stickler DJ (2014) Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med 276:120–129
PubMed
CAS
Article
Google Scholar
Stoodley P, Boyle JD, Dodds I et al (1998) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28S
PubMed
Article
Google Scholar
Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716
PubMed
CAS
PubMed Central
Google Scholar
Stoodley P, Sauer K, Davies DG et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209
PubMed
CAS
Article
Google Scholar
Sun LM, Zhang CL, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60:6150–6156
PubMed
CAS
Article
Google Scholar
Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiol 147:3–9
CAS
Article
Google Scholar
Szczotka-Flynn LB, Imamura Y, Chandra J et al (2009) Increased resistance of contact lens related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 28:918–926
PubMed
PubMed Central
Article
Google Scholar
Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554
PubMed
CAS
PubMed Central
Article
Google Scholar
Tanaka M, Mroz P, Dai T et al (2012) Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS ONE 7:e39823
PubMed
CAS
PubMed Central
Article
Google Scholar
Tawakoli PN, Al-Ahmad A, Hoth-Hannig W et al (2013) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17:841–850
PubMed
CAS
Article
Google Scholar
Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320
PubMed
CAS
PubMed Central
Article
Google Scholar
Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47
PubMed
CAS
Article
Google Scholar
Trizna EY, Khakimullina EN, Latypova LZ et al (2015) Thio derivatives of 2(5H)-furanone as inhibitors against Bacillus subtilis biofilms. Acta Naturae 7:102–107
PubMed
PubMed Central
Google Scholar
Tsuneda S, Aikawa H, Hayashi H et al (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292
PubMed
CAS
Article
Google Scholar
Uroz S, Oger P, Lepleux C et al (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res Microbiol 162:820–831
PubMed
CAS
Article
Google Scholar
Valle J, Da Re S, Henry N et al (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Ptoc Nat Acad Sci USA 103:12558–12563
CAS
Article
Google Scholar
Vandecandelaere I, Matthijs N, Van Nieuwerburgh F et al (2012) Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS ONE 7:e38401
PubMed
CAS
PubMed Central
Article
Google Scholar
Vu B, Chen M, Crawford RJ et al (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554
PubMed
CAS
Article
Google Scholar
Wainwright M, Crossley KB (2004) Photosensitising agents-circumventing resistance and breaking down biofims: a review. Intern Biodeter Biodegrad 53:119–126
CAS
Article
Google Scholar
Walters MC III, Roe F, Bugnicourt A et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Ag Chemother 47:317–323
CAS
Article
Google Scholar
Wang A, Athan E, Pappas PA et al (2007) Contemporary clinical profile and outcome of prosthetic valve endocarditis. J Am Med Assn 297:1354–1361
CAS
Article
Google Scholar
Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol 21:319–346
CAS
Article
Google Scholar
Wen ZT, Burne RA (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691
PubMed
CAS
PubMed Central
Article
Google Scholar
Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances– characterization, structure and function. Springer-Verlag, Berlin Heidelberg, pp 1–19
Chapter
Google Scholar
Wolfaardt GM, Lawrence JR, Robarts RD et al (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223
PubMed
CAS
Article
Google Scholar
Woo GL, Yang ML, Yin HQ et al (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with floroquinolones. J Biomed Mater Res 59:35–45
PubMed
CAS
Article
Google Scholar
Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769
PubMed
CAS
Article
Google Scholar
Zhang L, Jiang Y, Ding Y et al (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanoflids). J Nanoparticle Res 9:479–489
Article
CAS
Google Scholar
Zhang L, Pornpattananangkul D, Hu CMJ et al (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594
PubMed
CAS
Article
Google Scholar
Zhu CT, Xu YQ, Shi J et al (2010) Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv 17:391–398
PubMed
CAS
Article
Google Scholar
Zobell CE (1943) The effect of solid surfaces on bacterial activity. J Bacteriol 46:39–56
PubMed
CAS
PubMed Central
Google Scholar
Zogaj X, Nimtz M, Ronde M et al (2001) The multicellular morphotipes of Salmonella typhimurium and E. coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463
PubMed
CAS
Article
Google Scholar