Skip to main content
Log in

New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Plant cell cultures are of particular interest in industrial applications as a source of biologically active substances. It is difficult, however, to achieve stable production of secondary metabolites for many plant cell cultures using classical techniques. Novel approaches should be developed for removal of the inhibitor blocks that prevent pathway activation and shift the regulatory balance to the activation of entire biosynthetic pathways. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. Only recently miRNAs have been demonstrated as active in secondary metabolism regulation. In this work, we summarize recent data on the emerging approaches based on regulation of secondary metabolism by miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J. doi:10.1111/pbi.12346

    PubMed  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22

    PubMed  CAS  Google Scholar 

  • Bulgakov VP, Veremeichik GN, Shkryl YN (2015) The rolB gene activates the expression of genes encoding microRNA processing machinery. Biotechnol Lett 37:921–925

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Georgiev MI, Weber J (2014) Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnol Lett 36:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hao DC, Yang L, Xiao PG, Liu M (2012) Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plant 146:388–403

    Article  PubMed  CAS  Google Scholar 

  • He X, Sun Q, Jiang H, Zhu X, Mo J, Long L, Xiang L, Xie Y, Shi Y, Yuan Y, Cai Y (2014) Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing. Springerplus 3:564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kettles GJ, Drurey C, Schoonbeek HJ, Maule AJ, Hogenhout SA (2013) Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198:1178–1190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J (2014) New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36:2393–2406

    Article  PubMed  CAS  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang JW, Rätsch G, Weigel D (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Natl Acad Sci USA 107:17466–17473

    Article  PubMed Central  PubMed  Google Scholar 

  • Legrand S, Valot N, Nicolé F, Moja S, Baudino S, Jullien F, Magnard JL, Caissard JC, Legendre L (2010) One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L. Gene 450:55–62

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zachgo S (2013) TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J 76:901–913

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L, Yeh TF, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA 110:10848–10853

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo QJ, Mittal A, Jia F, Rock CD (2012) An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol Biol 80:117–129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P, Tuli R (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Ng DW, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, Chen ZJ (2011) cis- and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 23:1729–1740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niemeier S, Junior LA, Merkle T (2010) Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Res Notes 3:59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Pani A, Mahapatra RK (2013) Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genomics Data 1:2–6

    Article  CAS  Google Scholar 

  • Ren G, Yu B (2012) Critical roles of RNA-binding proteins in miRNA biogenesis in Arabidopsis. RNA Biol 9:1424–1428

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JD (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67:218–231

    Article  PubMed  CAS  Google Scholar 

  • Ronemus M, Vaughn MW, Martienssen RA (2006) MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18:1559–1574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tang M, Mao D, Xu L, Li D, Song S, Chen C (2014) Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genom 15:835

    Article  CAS  Google Scholar 

  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trumbo JL, Zhang B, Stewart CN Jr (2015) Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. Plant Biotechnol J 13:337–354

    Article  PubMed  CAS  Google Scholar 

  • Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 21:3063–3077

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb Picrorhiza kurroa. Planta. doi:10.1007/s00425-015-2255-y

    Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA (2011) Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25:64–76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, Cao X (2013) NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY (2015) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M et al (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Russian Science Foundation (Grant Number 14-14-00230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Bulgakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulgakov, V.P., Avramenko, T.V. New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol Lett 37, 1719–1727 (2015). https://doi.org/10.1007/s10529-015-1863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1863-8

Keywords

Navigation