Skip to main content
Log in

Hex1-related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

The tolerance to organophosphate pesticide, dichlorvos, is essential for the application of Trichoderma in bioremediation and integrated pest management, although the molecular events associated with the tolerance process have not yet been elucidated.

Results

RNA-seq analysis of wild-type Trichoderma atroviride T23 and the hex1-deleted mutant under dichlorvos stress was designed to search for genes involved in the tolerance process. A total of 5382 differentially expressed genes were identified, highlighting the complex transcriptional changes of T. atroviride in response to dichlorvos stress. 137 genes were regulated by dichlorvos and hex1, encoding major facilitator superfamilies, cytochrome P450, glutathione-S-transferase, flavoprotein, Hsp70, Hsp90, etc. Pathway and expression analysis indicated that ABC transporters were affected by the disruption of hex1 gene and might play a vital role in the tolerance process. Expression patterns of seven selected ABC transporter genes were confirmed by qRT-PCR after exposure to dichlorvos for 2, 6 and 24 h.

Conclusions

The present study provides insights into the genetic basis of dichlorvos tolerance in Trichoderma that may be exploited for further development of bioremediation or biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ammar GA, Tryono R, Döll K, Karlovsky P, Deising HB, Wirsel SGR (2013) Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence. PLoS One 8:e79042

    Article  PubMed Central  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon RD, Lamping E, Holmes AR et al (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubey MK, Jensen DF, Karlsson M (2014) An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. Mol Plant Microbe Interact 27:725–732

    Article  CAS  PubMed  Google Scholar 

  • Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served? FEBS J 277:540–549

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Liu L, Liu X, Zhou H, Lu J, Huang S, Wang Z (2009) The occurrence and spatial distribution of organophosphorous pesticides in Chinese surface water. Bull Environ Contam Toxicol 82:223–229

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I et al (2011) The genome portal of the Department of Energy Joint Genome Institute. Nucl Acids Res 40:D26–D32

    Article  PubMed Central  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucl Acids Res 40:D109–D114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazemi M, Tahmasbi A, Valizadeh R, Naserian A, Soni A (2012) Organophosphate pesticides: a general review. Agric Sci Res J 2:512–522

    Google Scholar 

  • Kovalchuk A, Driessen AJM (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11:177

    Article  PubMed Central  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Morschhäuser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47:94–106

    Article  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nornberg BF, Batista CR, Almeida DV, Trindade GS, Marins LF (2015) ABCB1 and ABCC4 efflux transporters are involved in methyl parathion detoxification in ZFL cells. Toxicol In Vitro 29:204–210

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Moye-Rowley WS (2014) Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 5:143

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren Z, Zhang X, Wang X et al (2014) AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure. Chemosphere 120:252–257

    Article  PubMed  Google Scholar 

  • Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9:1029–1050

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Chen Y, Liu L, Tang J, Chen J, Liu P (2010) Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism. Bioresour Technol 101:9197–9203

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Liu L, Hu S, Chen Y, Chen J (2009) Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresour Technol 100:480–483

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Li Y, Fu K et al (2014) Disruption of hex1 in Trichoderma atroviride leads to loss of Woronin body and decreased tolerance to dichlorvos. Biotechnol Lett 36:751–759

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Technol Environ Policy 15:541–550

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (31270155, 31440025, 31201557), Natural Science Foundation of Shanghai (12ZR1414100), Key Basic Research Project of Shanghai Municipal Science and Technology Commission (12JC1404600), Special Project of Basic Work Project for Science and Technology (2014FY120900). The authors thank Zhe Zhang for Perl programming, and Weixuan Wu for the help in qPCR data analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

Supplementary Table 1—Genes and PCR primers used for quantitative PCR analysis.

Supplementary Table 2—137 candidate genes involved in dichlorvos tolerance and regulated by hex1 from cluster I and III. 25 genes involved in transport activity are highlighted.

Supplementary Table 3—28 ABC transporters in Trichoderma atroviride.

Supplementary Fig. 1—Gene ontology (GO) annotation of differentially expressed genes (corrected P value ≤ 0.05). Distribution of differentially expressed genes using the Blast2GO function prediction tool. The major gene function categories include biological process, cellular component, and molecular function. Significantly enriched GO terms at level 2 in at least one comparison are plotted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Tang, J., Sun, J. et al. Hex1-related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos. Biotechnol Lett 37, 1421–1429 (2015). https://doi.org/10.1007/s10529-015-1806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1806-4

Keywords

Navigation