Skip to main content

Advertisement

Log in

Significant differences in integration sites of Moloney murine leukemia virus/Moloney murine sarcoma virus retroviral vector carrying recombinant coagulation factor IX in two human cell lines

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Ligation-mediated-PCR was performed followed by the mapping of 177 and 150 integration sites from HepG2 and Hek293 transduced with chimera vector carrying recombinant human Factor IX (rhFIX) cDNA, respectively. The sequences were analyzed for chromosome preference, CpG, transcription start site (TSS), repetitive elements, fragile sites and target genes. In HepG2, rhFIX was had an increased preference for chromosomes 6 and 17; the median distance to the nearest CpG islands was 15,240 base pairs and 37 % of the integrations occurred in RefSeq genes. In Hek293, rhFIX had an increased preference for chromosome 5; the median distance to the nearest CpG islands was 209,100 base pairs and 74 % of the integrations occurred in RefSeq genes. The integrations in both cell lines were distant from the TSS. The integration patterns associated with this vector are different in each cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109:807–809

    Article  CAS  PubMed  Google Scholar 

  • Aker M, Tubb J, Miller DG et al (2006) Integration bias of gammaretrovirus vectors following transduction and growth of primary mouse hematopoietic progenitor cells with and without selection. Mol Ther 14:226–235

    Article  CAS  PubMed  Google Scholar 

  • Appelt JU, Giordano FA, Ecker M et al (2009) QuickMap: a public tool for large-scale gene therapy vector insertion site mapping and analysis. Gene Ther 16:885–893

    Article  CAS  PubMed  Google Scholar 

  • Castilho-Fernandes A, de Almeida DC, Fontes AM et al (2011) Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells. Exp Mol Pathol 91:664–672

    Article  CAS  PubMed  Google Scholar 

  • Conley AB, Piriyapongsa J, Jordan IK (2008) Retroviral promoters in the human genome. Bioinformatics 24:1563–1567

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaleko M, Garcia JV, Miller AD (1991) Persistent gene expression after retroviral gene transfer into liver cells in vivo. Hum Gene Ther 2:27–32

    Article  CAS  PubMed  Google Scholar 

  • Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3:257–263

    PubMed Central  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–892

    Article  CAS  PubMed  Google Scholar 

  • Legrier ME, Yang CP, Yan HG et al (2007) Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 67:11300–11308

    Article  CAS  PubMed  Google Scholar 

  • Matsushita T, Emi N, Takahashi I et al (1993) Construction and its expression of a new retroviral vector containing a human blood coagulation factor IX cDNA. Thromb Res 69:387–393

    Article  CAS  PubMed  Google Scholar 

  • Mikkers H, Berns A (2003) Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 88:53–99

    CAS  PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR et al (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed Central  PubMed  Google Scholar 

  • Moalic Y, Blanchard Y, Felix H et al (2006) Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J Virol 80:10980–10988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narezkina A, Taganov KD, Litwin S et al (2004) Genome-wide analyses of avian sarcoma virus integration sites. J Virol 78:11656–11663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russo-Carbolante EM, Picanco-Castro V, Alves DC et al (2011) Integration pattern of HIV-1 based lentiviral vector carrying recombinant coagulation factor VIII in Sk-Hep and 293T cells. Biotechnol Lett 33:23–31

    Article  CAS  PubMed  Google Scholar 

  • Santoni FA, Hartley O, Luban J (2010) Deciphering the code for retroviral integration target site selection. PLoS Comput Biol 6:e1001008

    Article  PubMed Central  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C et al (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  PubMed  Google Scholar 

  • Wajih N, Hutson SM, Owen J et al (2005) Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle. J Biol Chem 280:31603–31607

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Lai P, Pang E et al (2000) A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 32:1060–1068

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Li Y, Crise B et al (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  CAS  PubMed  Google Scholar 

  • Wurtele H, Little KC, Chartrand P (2003) Illegitimate DNA integration in mammalian cells. Gene Ther 10:1791–1799

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank: FINEP (Grant no 01.07.0652.00), FAPESP (Grant no 1998/14247-6), CNPq (Grant no 310619/2012-2 and 2008/57877-3). KJA also acknowledges financial support of the program Professor Visitante do Exterior of CAPES (Grant no 6327109) and Pesquisador Visitante Internacional of USP (Grant no 13.1.1318.17.3). Also, Sandra Navarro Bresciani for helping with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparecida Maria Fontes.

Additional information

Kuruvilla Joseph Abraham: Bolsista Professor Visitante/FMRP-USP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilho-Fernandes, A., Fontes, A.M., Abraham, K.J. et al. Significant differences in integration sites of Moloney murine leukemia virus/Moloney murine sarcoma virus retroviral vector carrying recombinant coagulation factor IX in two human cell lines. Biotechnol Lett 37, 991–1001 (2015). https://doi.org/10.1007/s10529-014-1764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1764-2

Keywords

Navigation