Conserved microRNA function as a basis for Chinese hamster ovary cell engineering

Abstract

The use of microRNAs (miRNAs) for improving the efficiency of recombinant protein production by CHO cells is gaining considerable interest for their ability to regulate entire molecular networks. Differential miRNA expression profiling and large-scale transient screening have been the prerequisite for the selection of miRNA candidates for stable manipulation, reported in CHO cells expressing a range of recombinant products. We selected a potent and well characterised tumour suppressor miRNA, miR-34a, as a high priority candidate for CHO cell engineering based on the conservation of both its sequence and function across species and cell type. Ectopic expression of miR-34a retained its functional conservation in CHO-SEAP cells by inhibiting growth by 90 % in addition to decreasing the viable cell population by 30 % when compared to controls. When the miR-34 family was stably depleted using a miRNA sponge decoy vector, the overall product yield was enhanced by ~2-fold in both fed-batch and small scale clonal batch cultures, despite having a negative impact on cell growth. These findings further strengthen the utility of miRNAs as engineering tools to modify and improve CHO cell performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bader AG (2012) miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet 3:120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Barron N, Kumar N, Sanchez N, Doolan P, Clarke C, Meleady P, O’Sullivan F, Clynes M (2011a) Engineering CHO cell growth and recombinant protein productivity by over-expression of miR-7. J Biotechnol 151:204–211

    Article  CAS  PubMed  Google Scholar 

  3. Barron N, Sanchez N, Kelly P, Clynes M (2011b) MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 33:11–21

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bernardi C, Soffientini U, Piacente F, Tonetti MG (2013) Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS ONE 8:e76540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee S, Fasler M, Bussing I, Grosshans H (2011) Target-mediated protection of endogenous microRNAs in C. elegans. Dev Cell 20:388–396

    Article  CAS  PubMed  Google Scholar 

  9. Clarke C, Henry M, Doolan P, Kelly S, Aherne S, Sanchez N, Kelly P, Kinsella P, Breen L, Madden SF, Zhang L, Leonard M, Clynes M, Meleady P, Barron N (2012) Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. BMC Genom 13:656

    Article  CAS  Google Scholar 

  10. Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. De Jesus M, Wurm FM (2011) Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm 78:184–188

    Article  PubMed  Google Scholar 

  12. Druz A, Chu C, Majors B, Santuary R, Betenbaugh M, Shiloach J (2011) A novel microRNA mmu-miR-466h affects apoptosis regulation in mammalian cells. Biotechnol Bioeng 108:1651–1661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Druz A, Son YJ, Betenbaugh M, Shiloach J (2013) Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metab Eng 16:87–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  15. Fischer S, Buck T, Wagner A, Ehrhart C, Giancaterino J, Mang S, Schad M, Mathias S, Aschrafi A, Handrick R, Otte K (2014) A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnol J 9:1279–1292

    Article  CAS  PubMed  Google Scholar 

  16. Gammell P, Barron N, Kumar N, Clynes M (2007) Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol 130:213–218

    Article  CAS  PubMed  Google Scholar 

  17. Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Honer Zu, Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153:62–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hackl M, Borth N, Grillari J (2012) miRNAs–pathway engineering of CHO cell factories that avoids translational burdening. Trends Biotechnol 30:405–406

    Article  CAS  PubMed  Google Scholar 

  19. Hammond S, Kaplarevic M, Borth N, Betenbaugh MJ, Lee KH (2012) Chinese hamster genome database: an online resource for the CHO community at www.CHOgenome.org. Biotechnol Bioeng 109:1353–1356

    Article  CAS  PubMed  Google Scholar 

  20. Hassan T, Smith SG, Gaughan K, Oglesby IK, O’Neill S, McElvaney NG, Greene CM (2013) Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique. Nucleic Acids Res 41:e71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez Bort JA, Hackl M, Hoflmayer H, Jadhav V, Harreither E, Kumar N, Ernst W, Grillari J, Borth N (2012) Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures. Biotechnol J 7:500–515

    Article  PubMed  Google Scholar 

  23. Jadhav V, Hackl M, Klanert G, Hernandez Bort JA, Kunert R, Grillari J, Borth N (2014) Stable over-expression of miR-17 enhances recombinant protein production of CHO cells. J Biotechnol 10:38–44

    Article  Google Scholar 

  24. Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30:356–362

    Article  CAS  PubMed  Google Scholar 

  25. Kelly PS, Clarke C, Clynes M, Barron N (2014) Bioprocess engineering: micromanaging Chinese hamster ovary cell phenotypes. Pharma Bioproc 2:323–337

    Article  Google Scholar 

  26. Kim SH, Lee GM (2007) Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Appl Microbiol Biotechnol 74:152–159

    Article  CAS  PubMed  Google Scholar 

  27. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  PubMed  Google Scholar 

  28. Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, Slezak-Prochazka I, Ding Y, Kroesen BJ, van den Berg A (2012a) Rapid generation of microRNA sponges for microRNA inhibition. PLoS ONE 7:e29275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A (2012b) Generation of miRNA sponge constructs. Methods 58:113–117

    Article  CAS  PubMed  Google Scholar 

  30. Lee JS, Ha TK, Park JH, Lee GM (2013) Anti-cell death engineering of CHO cells: co-over-expression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol Bioeng 110:2195–2207

    Article  CAS  PubMed  Google Scholar 

  31. Loh WP, Loo B, Zhou L, Zhang P, Lee DY, Yang Y, Lam KP (2014) Over-expression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol J 9:1140–1151

    Article  CAS  PubMed  Google Scholar 

  32. Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106:774–783

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Sanchez A, Murphy CL (2013) MicroRNA target identification—experimental approaches. Biology 2:189–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Navarro F, Gutman D, Meire E, Caceres M, Rigoutsos I, Bentwich Z, Lieberman J (2009) miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114:2181–2192

    Article  CAS  PubMed  Google Scholar 

  35. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Google Scholar 

  36. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23

    Article  PubMed Central  PubMed  Google Scholar 

  37. Rahimpour A, Vaziri B, Moazzami R, Nematollahi L, Barkhordari F, Kokabee L, Adeli A, Mahboudi F (2013) Engineering the Cellular protein secretory pathway for enhancement of recombinant tissue plasminogen activator expression in Chinese hamster ovary cells: effects of CERT and XBP1s Genes. J Microbiol Biotechnol 23:1116–1122

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez N, Gallagher M, Lao N, Gallagher C, Clarke C, Doolan P, Aherne S, Blanco A, Meleady P, Clynes M, Barron N (2013a) MiR-7 Triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PLoS ONE 8:e65671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sanchez N, Kelly P, Gallagher C, Lao NT, Clarke C, Clynes M, Barron N (2013b) CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnol J 9:396–404

    Article  PubMed  Google Scholar 

  40. Shen Z, Zhan G, Ye D, Ren Y, Cheng L, Wu Z, Guo J (2012) MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med Oncol 29:2473–2480

    Article  CAS  PubMed  Google Scholar 

  41. Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, Cerny J, Sharp PA, Lieberman J, Manjunath N, Shankar P (2003) Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 77:7174–7181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Strotbek M, Florin L, Koenitzer J, Tolstrup A, Kaufmann H, Hausser A, Olayioye MA (2013) Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Metab Eng 20:157–166

    Article  CAS  PubMed  Google Scholar 

  43. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568

    Article  CAS  PubMed  Google Scholar 

  44. Sun L, Wu Z, Shao Y, Pu Y, Miu W, Yao J, Wu Y, Yang Z (2012) MicroRNA-34a suppresses cell proliferation and induces apoptosis in U87 glioma stem cells. Technol Cancer Res Treat 11:483–490

    CAS  PubMed  Google Scholar 

  45. Sunley K, Butler M (2010) Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 28:385–394

    Article  CAS  PubMed  Google Scholar 

  46. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acid Res 39:6845–6853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Truettner JS, Motti D, Dietrich WD (2013) MicroRNA over-expression increases cortical neuronal vulnerability to injury. Brain Res 1533:122–130

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622

    Article  CAS  PubMed  Google Scholar 

  50. Yang X, Rutnam ZJ, Jiao C, Wei D, Xie Y, Du J, Zhong L, Yang BB (2012) An anti-let-7 sponge decoys and decays endogenous let-7 functions. Cell Cycle 11:3097–3108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhao X, Guo J, Yu Y, Yi S, Yu T, Fu L, Hou L, Chen W (2011) Over-expression of survivin and cyclin D1 in CHO cells confers apoptosis resistance and enhances growth in serum-free suspension culture. Biotechnol Lett 33:1293–1300

    Article  CAS  PubMed  Google Scholar 

  52. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by finding from Science Foundation Ireland (SFI) Grant number 07/IN.1/B1323.

Supporting information

Supplementary Fig. 1—GFP expression was determined for a panel of 24 clones derived from stable CHO-K1-SEAP cells expressing either a negative control sponge (miR-NC spg) or a miR-34 sponge (miR-34 spg) using the Guava ExpressPlus programme. Each bar denotes the GFP intensity of every individual clones while the broken red line represents the average GFP intensity across the entire clonal panel.

Supplementary Table 1—Primer sequences for semi-quantitative and qRT-PCR

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul S. Kelly.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kelly, P.S., Gallagher, C., Clynes, M. et al. Conserved microRNA function as a basis for Chinese hamster ovary cell engineering. Biotechnol Lett 37, 787–798 (2015). https://doi.org/10.1007/s10529-014-1751-7

Download citation

Keywords

  • Apoptosis
  • Chinese hamster ovary cell
  • microRNA
  • microRNA sponge
  • miR-34a
  • Productivity