Skip to main content
Log in

Morphological transitions under oxidative stress in response to metabolite formation in Aspergillus niger

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Oxidative stress is associated with metabolite formation in fungi. In contrast to an Aspergillus niger wild-type strain, a sclerotia-formation regulator ansclR deletion strain demonstrated increased susceptibility to oxidative stress and reduced transcription of the catalase gene, catB, while an ansclR overexpression strain showed enhanced resistance to oxidative stress and increased expression of catB. In addition, ansclR complementation strain expressed a wild-type level of catB. The ansclR overexpression strain also produced the same metabolites as the wild type strain treated with H2O2. Furthermore, LC–MS, NMR, and IR analyses showed that the main metabolite was a steroid analog. Our study adds new clues to oxidative stress-related factors and metabolite formation in A. niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell EI, Unkles SE, Macro JA, van den Hondel C, Contreras R et al (1989) Improved transformation efficiency of Aspergillus niger using the homologous niaD gene for nitrate reductase. Curr Genet 16:53–56

    Article  CAS  PubMed  Google Scholar 

  • Carvalho NDSP, Arentshorst M, Kwon MJ, Meyer V, Ram AF (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87:1463–1473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang PK, Bennett JW, Cotty PJ (2002) Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia 153:41–48

    Article  CAS  PubMed  Google Scholar 

  • Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS et al (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Georgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G (2006) Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 46:691–712

    Article  CAS  PubMed  Google Scholar 

  • Jin FJ, Takahashi T, Matsushima K, Hara S, Shinohara Y et al (2011) SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae. Eukaryot Cell 10:945–955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183:1434–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC et al (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372

    Article  CAS  PubMed  Google Scholar 

  • Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Physiol Mol Plant 8:713–722

    CAS  Google Scholar 

  • Legiša M, Mattey M (2007) Changes in primary metabolism leading to citric acid overflow in Aspergillus niger. Biotechnol Lett 29:181–190

    Article  PubMed  Google Scholar 

  • Lone IH, Khan KZ, Fozdar BI, Hussain F (2013) Synthesis antimicrobial and antioxidant studies of new oximes of steroidal chalcones. Steroids 78:945–950

    Article  CAS  PubMed  Google Scholar 

  • Pel HJ, De Winde JH, Archer DB et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  • Reverberi M, Gazzetti K, Punelli F, Scarpari M, Zjalic S et al (2012) Aoyap1 regulates OTA synthesis by controlling cell redox balance in Aspergillus ochraceus. Appl Microbiol Biotechnol 95:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Roze LV, Chanda A, Wee J, Awad D, Linz JE (2011) Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in aspergilli. J Biol Chem 286:35137–35148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591–600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A et al (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Guo G, Wang C, Lin Y, Wang X et al (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Mao Z, Xue W, Li Y, Tang G et al (2011) Ku80 gene is related to non-homologous end-joining and genome stability in Aspergillus niger. Curr Microbiol 62:1342–1346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 863 (Hi-tech research and development program of China) program (No. 2012AA022108) and by the Guangdong Provincial Department of Science and Technology Research Project (Nos. 2012B010900028 and 2012A080800013).

Supporting information

Supplementary Table 1 – Strains and plasmids used in this study.

Supplementary Table 2 – Primers used in this study.

Supplementary Figure 1 – Construction of the ansclR deletion, complementation and ansclR overexpression strains.

Supplementary Figure 2 – Antibacterial activity analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Zhou, F., Wang, B. et al. Morphological transitions under oxidative stress in response to metabolite formation in Aspergillus niger . Biotechnol Lett 37, 601–608 (2015). https://doi.org/10.1007/s10529-014-1713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1713-0

Keywords

Navigation