Skip to main content
Log in

Lentivirus-mediated Wnt10b overexpression enhances fracture healing in a rat atrophic non-union model

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Lentivirus vectors encoding Wnt10b gene (LV–Wnt10b) or luciferase gene (LV-luc) were constructed to determine whether Wnt10b overexpression improved fracture healing in a rat atrophic non-union model. After fracture, rats were injected with LV-Wnt10b or LV-luc. Luciferase signals were clearly detected. At 2 and 4 weeks, LV-Wnt10b group had 107 and 98 % more proliferating cell nuclear antigen (PCNA) positive cells, respectively, and promoted expression of bone morphogenetic protein-2 (BMP-2) in the callus compared with controls. LV-Wnt10b injection significantly increased bone mass density and bone mineral content: 46–84 and 96–193 %, respectively, at the site of fracturein the LV-Wnt10b group compared with controls. At 8 weeks, fractured femora were healed in the LV-Wnt10b group compared with atrophic non-unions formed in controls. Thus, Wnt10b overexpression associated with lentiviral gene therapy is effective in healing atrophic non-unions in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102:3324–3329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22:1924–1932

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106:353–362

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei Q, Poon R, Alman BA (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4:e249

    Article  PubMed Central  PubMed  Google Scholar 

  • Chow DH, Suen PK, Fu LH, Cheung WH, Leung KS, Wong MW, Qin L (2012) Extracorporeal shockwave therapy for treatment of delayed tendon-bone insertion healing in a rabbit model: a dose-response study. Am J Sports Med 40:2862–2871

    Article  PubMed  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–21

    Article  PubMed  Google Scholar 

  • Eriksson C, Nygren H, Ohlson K (2004) Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 25:4759–4766

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Zhang G, Wang YS, Qin L, Hung WY, Leung K, Pei FX (2007) Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41:631–638

    Article  PubMed  Google Scholar 

  • Holstein JH, Orth M, Scheuer C, Tami A, Becker SC, Garcia P, Histing T, Morsdorf P, Klein M, Pohlemann T, Menger MD (2011) Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone 49:1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Iyer M, Salazar FB, Lewis X, Zhang L, Carey M, Wu L, Gambhir SS (2004) Noninvasive imaging of enhanced prostate-specific gene expression using a two-step transcriptional amplification-based lentivirus vector. Mol Ther 10:545–552

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA (2007) Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem 282:14515–14524

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kokubu T, Hak DJ, Hazelwood SJ, Reddi AH (2003) Development of an atrophic non-union model and comparison to a closed healing fracture in rat femur. J Orthop Res 21:503–510

    Article  PubMed  Google Scholar 

  • Li YH, Zhang K, Yang K, Ye JX, Xing YZ, Guo HY, Deng F, Lian XH, Yang T (2013) Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Invest Dermatol 133:42–48

    Article  CAS  PubMed  Google Scholar 

  • Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215:578–587

    Article  CAS  PubMed  Google Scholar 

  • RundleCH MiyakoshiN, Kasukawa Y et al (2003) In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4. Bone 32:591–601

    Article  Google Scholar 

  • Suen PK, He YX, Chow DH et al (2014) Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J Orthop Res 32:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Uusitalo H, Hiltunen A, Ahonen M, Kahari VM, Aro H, Vuorio E (2001) Induction of periosteal callus formation by bone morphogenetic protein-2 employing adenovirus-mediated gene delivery. Matrix Biol 20:123–127

    Article  CAS  PubMed  Google Scholar 

  • Virk MS, Conduah A, Park SH et al (2008) Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42:921–931

    Article  CAS  PubMed  Google Scholar 

  • Yu HM, Jerchow B, Sheu TJ et al (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995–2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng LW, Ma L, Cheung LK (2008) Changes in blood perfusion and bone healing induced by nicotine during distraction osteogenesis. Bone 43:355–361

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supporting information

Supplementary Figure 1 – HE staining showing bone formation and unions at the fracture site in the LV-luc (a) and LV-Wnbt10 group (b) at 8 weeks post-fracture.

Supplementary Figure 2 – Radiographs of atrophic non-union models in the LV-luc (a, c, e, g) and LV-Wnt10b group (b, d, f, h) obtained at 2 weeks (a, b), 4 weeks (c, d), 6 weeks (e, f) and 8 weeks after surgery (g, h).

Supplementary Figure 3 – LV-Wnt10b treatment enhances total bone mineral density (BMD) (A) and bone mineral content (BMC) (B) in the fracture callus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-lin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Zhang, Cq., Chai, Ym. et al. Lentivirus-mediated Wnt10b overexpression enhances fracture healing in a rat atrophic non-union model. Biotechnol Lett 37, 733–739 (2015). https://doi.org/10.1007/s10529-014-1703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1703-2

Keywords

Navigation